Machine Learning-Assisted Identification of Copolymer Microstructures Based on Microscopic Images

被引:9
|
作者
Xu, Han [1 ]
Ma, Sainan [1 ,2 ]
Hou, Yang [1 ]
Zhang, Qinghua [1 ]
Wang, Rui [3 ]
Luo, Yingwu [1 ]
Gao, Xiang [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, State Key Lab Chem Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Ningbo Res Inst, Ningbo 315100, Peoples R China
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
polymer microstructure; glass transition temperature width; machine learning; small data set; transfer learning; interpretability; GRADIENT COPOLYMERS; PREDICTION; DESIGN;
D O I
10.1021/acsami.2c15311
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructure of polymer materials is an important bridge between their molecular structure and macroproperties, which is of great significance to be effectively identified. With the increasing refinement of polymer material design, the microstructure of different polymer materials gradually converges, which is difficult to distinguish. In this study, the machine learning method is applied to recognize the microstructure. A highly accurate and interpretable model based on small experimental data sets has been completed by the methods of transfer learning and feature visualization, making the result of the model that can be explained from the perspective of physical chemistry. This work provides an idea for identifying microstructure and will help further promote intelligent polymer research and development.
引用
收藏
页码:47157 / 47166
页数:10
相关论文
共 50 条
  • [1] Factors affecting biochemical pregnancy: Machine learning-assisted identification
    Ortiz, J. A.
    Lledo, B.
    Morales, R.
    Manez, A.
    Cascales, A.
    Rodriguez-Arnedo, A.
    Bernabeu, A.
    Bernabeu, R.
    HUMAN REPRODUCTION, 2022, 37
  • [2] Machine learning-assisted microscopic public transportation simulation: Two coupling strategies
    Delhoum, Younes
    Cardin, Olivier
    Nouiri, Maroua
    Harzallah, Mounira
    SIMULATION MODELLING PRACTICE AND THEORY, 2024, 137
  • [3] Machine learning-assisted equivalent circuit identification for dielectric spectroscopy of polymers
    Albakri, Bashar
    Diniz, Analice Turski Silva
    Benner, Philipp
    Muth, Thilo
    Nakajima, Shinichi
    Favaro, Marco
    Kister, Alexander
    ELECTROCHIMICA ACTA, 2024, 496
  • [4] Machine learning-assisted enzyme engineering
    Siedhoff, Niklas E.
    Schwaneberg, Ulrich
    Davari, Mehdi D.
    ENZYME ENGINEERING AND EVOLUTION: GENERAL METHODS, 2020, 643 : 281 - 315
  • [5] Machine Learning-Assisted Performance Testing
    Moghadam, Mahshid Helali
    ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2019, : 1187 - 1189
  • [6] Machine learning-assisted pulmonary emboly diagnosis from SPECT/CT images
    Hajianfar, Ghasem
    Salimi, Yazdan
    Jafari, Esmail
    Zareian, Hassan
    Ahadi, Marziye
    Amini, Mehdi
    Mousavi, Seyed Amirhossein
    Bagheri, Soroush
    Mansouri, Zahra
    Assadi, Majid
    Zaidi, Habib
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [7] Machine learning-assisted parameter identification for constitutive models based on concatenated loading path sequences
    Schulte, Robin
    Karca, Cavid
    Ostwald, Richard
    Menzel, Andreas
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 98
  • [8] Machine Learning-Assisted Cell Identification Based on Ion Current Fingerprints of Single Cells at the Orifice of a Nanopipette
    Gao, Tienan
    He, Xiulan
    Xue, Yifei
    Li, Ting
    Liu, Yang
    Chen, Mingli
    Wang, Jianhua
    Yu, Ping
    Mao, Lanqun
    CCS CHEMISTRY, 2025, 7 (03): : 691 - 702
  • [9] Machine/deep learning-assisted hemoglobin level prediction using palpebral conjunctival images
    Kato, Shota
    Chagi, Keita
    Takagi, Yusuke
    Hidaka, Moe
    Inoue, Shutaro
    Sekiguchi, Masahiro
    Adachi, Natsuho
    Sato, Kaname
    Kawai, Hiroki
    Kato, Motohiro
    BRITISH JOURNAL OF HAEMATOLOGY, 2024, 205 (04) : 1590 - 1598
  • [10] Towards a Machine Learning-Assisted Kernel with LAKE
    Fingler, Henrique
    Tarte, Isha
    Yu, Hangchen
    Szekely, Ariel
    Hu, Bodun
    Akella, Aditya
    Rossbach, Christopher J.
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 2, ASPLOS 2023, 2023, : 846 - 861