Short-term Demand Forecasting of Shared Bicycles Based on Long Short-term Memory Neural Network and Climate Characteristics

被引:0
|
作者
Xu, Yuan [1 ]
Wang, Xin [1 ]
机构
[1] Beijing Univ Informat Sci & Technol, Coll Sci, Beijing 100096, Peoples R China
关键词
Long short term memory neural network; Climate characteristics; Time series;
D O I
10.1117/12.2614985
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shared bicycle is an emerging industry in recent years. It is an important part of urban transportation system. Its short-term demand forecasting is of great significance to the supply, management and allocation of shared bicycle resources. The data of shared bikes are crawled to analyse the impact of time and climate characteristics on the demand for shared bikes. The short-term demand of shared bicycles is predicted by long short-term memory neural network. The experimental results showed that the long short-term memory neural network is suitable for the prediction of shared bicycle demand, and the prediction results with climate characteristics are better than those with only time series. Applying this model to predict the short-term demand of shared bicycles can improve the configuration efficiency of shared bicycles. On this basis, it provides a basis for establishing accurate and effective shared bicycle configuration strategy.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Flight short-term booking demand forecasting based on a long short-term network
    He, Haonan
    Chen, Liangyu
    Wang, Shanyong
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 186
  • [2] Short-term runoff forecasting in an alpine catchment with a long short-term memory neural network
    Frank, Corinna
    Russwurm, Marc
    Fluixa-Sanmartin, Javier
    Tuia, Devis
    [J]. FRONTIERS IN WATER, 2023, 5
  • [3] Short-term forecasting of rail transit passenger flow based on long short-term memory neural network
    Liu, Yuan
    Qin, Yong
    Guo, Jianyuan
    Cai, Changjun
    Wang, Yaguan
    Jia, Limin
    [J]. 2018 INTERNATIONAL CONFERENCE ON INTELLIGENT RAIL TRANSPORTATION (ICIRT), 2018,
  • [4] Short-term wind speed forecasting based on long short-term memory and improved BP neural network
    Chen, Gonggui
    Tang, Bangrui
    Zeng, Xianjun
    Zhou, Ping
    Kang, Peng
    Long, Hongyu
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [5] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    [J]. 2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [6] Warehouse Demand Forecasting based on Long Short-Term Memory neural networks
    Hodzic, Kerim
    Hasic, Haris
    Cogo, Emir
    Juric, Zeljko
    [J]. 2019 XXVII INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT 2019), 2019,
  • [7] An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting
    Liu, Jinyuan
    Wang, Shouxi
    Wei, Nan
    Yang, Yi
    Lv, Yihao
    Wang, Xu
    Zeng, Fanhua
    [J]. ENERGIES, 2023, 16 (03)
  • [8] PowerLSTM: Power Demand Forecasting Using Long Short-Term Memory Neural Network
    Cheng, Yao
    Xu, Chang
    Mashima, Daisuke
    Thing, Vrizlynn L. L.
    Wu, Yongdong
    [J]. ADVANCED DATA MINING AND APPLICATIONS, ADMA 2017, 2017, 10604 : 727 - 740
  • [9] Improved long short-term memory network based short term load forecasting
    Cui, Jie
    Gao, Qiang
    Li, Dahua
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4428 - 4433
  • [10] Short-Term Photovoltaic Power Forecasting Based on Long Short Term Memory Neural Network and Attention Mechanism
    Zhou, Hangxia
    Zhang, Yujin
    Yang, Lingfan
    Liu, Qian
    Yan, Ke
    Du, Yang
    [J]. IEEE ACCESS, 2019, 7 : 78063 - 78074