Novel cryogenic argon recovery from the air separation unit integrated with LNG regasification and CO2 transcritical power cycle

被引:32
|
作者
Mehrpooya, Mehdi [1 ]
Golestani, Behrooz [2 ]
Mousavian, S. M. Ali [2 ]
机构
[1] Univ Tehran, Dept Renewable Energies & Environm, Fac New Sci & Technol, Tehran, Iran
[2] Univ Tehran, Univ Coll Engn, Sch Chem Engn, POB 11365-4563, Tehran, Iran
关键词
Cryogenic air separation; Argon recovery; LNG regasification; Gas turbine; Transcritical CO2 power cycle; LIQUEFIED NATURAL-GAS; ORGANIC RANKINE-CYCLE; FIN HEAT-EXCHANGERS; THERMODYNAMIC ANALYSIS; EXERGY ANALYSIS; WORKING FLUIDS; SOLAR-ENERGY; OPTIMAL-DESIGN; FUEL-CELL; OPTIMIZATION;
D O I
10.1016/j.seta.2020.100767
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two novel air separation units at cryogenic temperature were proposed to reach high purity nitrogen, oxygen, and argon. The first process refers to a three-column cryogenic air separation plant without using an external refrigeration system. An integrated process including cryogenic air separation, combined-cycle power plants (e.g., transcritical CO2 cycle and gas turbine), and LNG regasification was presented and analyzed as the second process to produce liquid oxygen and vaporize LNG without using external refrigeration source. Results of the first proposed process demonstrate that the specific energy consumption of high purity nitrogen, oxygen, and argon reduces to 18.7%, 13%, and 12% respectively when compared with the conventional processes. Specific energy consumptions and exergy efficiency for the second plant improved by nearly 33% and 16% in comparison with the first process. Also, the gas turbine and CO2 power cycle efficiencies were almost 35% and 45% in the second process. Exergy analysis on both systems demonstrated that expansion valve V-2 (99.42%), high-pressure distillation columns (99.41%), and argon recovery section (98.34%) have the lowest irreversibility and highest exergy efficiency. Meanwhile, the highest exergy destructions in the first and second proposed plants belong to the low-pressure distillation tower of the first process and the combustion chamber of the second process with around 3400 kW and 24,000 kW respectively.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Introducing a novel air separation process based on cold energy recovery of LNG integrated with coal gasification, transcritical carbon dioxide power cycle and cryogenic CO2 capture
    Mehrpooya, Mehdi
    Esfilar, Reza
    Moosavian, S. M. Ali
    JOURNAL OF CLEANER PRODUCTION, 2017, 142 : 1749 - 1764
  • [2] Thermodynamic and Exergy Analyses of a Novel Solar-Powered CO2 Transcritical Power Cycle with Recovery of Cryogenic LNG Using Stirling Engines
    Naseri, A.
    Fazlikhani, M.
    Sadeghzadeh, M.
    Naeimi, A.
    Bidi, M.
    Tabatabaei, S. H.
    RENEWABLE ENERGY RESEARCH AND APPLICATIONS, 2020, 1 (02): : 175 - 185
  • [3] Introducing and 3E (energy, exergy, economic) analysis of an integrated transcritical CO2 Rankine cycle, Stirling power cycle and LNG regasification process
    Akbari, Nozar
    APPLIED THERMAL ENGINEERING, 2018, 140 : 442 - 454
  • [4] INTEGRATED CRYOGENIC SYSTEM FOR CO2 SEPARATION AND LNG PRODUCTION FROM LANDFILL GAS
    Chang, H. M.
    Chung, M. J.
    Park, S. B.
    ADVANCES IN CRYOGENIC ENGINEERING, VOLS 55A AND 55B, 2010, 1218 : 278 - +
  • [5] Theoretical investigation on a novel CO2 transcritical power cycle
    Pan, Li-Sheng
    Wei, Xiao-Lin
    Shi, Wei-Xiu
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (06): : 1182 - 1185
  • [6] A novel cryogenic power cycle for LNG cold energy recovery
    Liu, Yanni
    Guo, Kaihua
    ENERGY, 2011, 36 (05) : 2828 - 2833
  • [7] Analysis of an integrated cryogenic air separation unit, oxy-combustion carbon dioxide power cycle and liquefied natural gas regasification process by exergoeconomic method
    Mehrpooya, Mehdi
    Zonouz, Masood Jalali
    ENERGY CONVERSION AND MANAGEMENT, 2017, 139 : 245 - 259
  • [8] A combined cooling and power transcritical CO2 cycle for waste heat recovery from gas turbines
    Sabzpoushan, S.
    Morad, M. R.
    Rahnama, H. Ebrahimi
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2022, 34
  • [9] Experimental investigation on the CO2 transcritical power cycle
    Pan, Lisheng
    Li, Bo
    Wei, Xiaolin
    Li, Teng
    ENERGY, 2016, 95 : 247 - 254
  • [10] Cryogenic process cycle for separation of oxygen, nitrogen and argon from air
    Nagarathinam, D.
    Chemical Engineering World, 1996, 31 (01): : 67 - 70