A Comparative Study of GP-based and State-of-the-art Classifiers on a Synthetic Machine Learning Benchmark

被引:0
|
作者
Orzechowski, Patryk [1 ,6 ]
Renc, Pawel [2 ,7 ]
La Cava, William [3 ]
Moore, Jason H. [4 ]
Sitek, Arkadiusz [2 ]
Was, Jaroslaw [5 ]
Wagenaar, Joost [1 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Sano, Ctr Computat Med, Krakow, Poland
[3] Harvard Med Sch, Boston Childrens Hosp, Boston, MA 02115 USA
[4] Cedars Sinai Med Ctr, Los Angeles, CA 90048 USA
[5] AGH Univ Sci & Technol, Krakow, Poland
[6] AGH Univ Sci & Technol, Dept Automat & Robot, Al Mickiewicza 30, PL-30059 Krakow, Poland
[7] AGH Univ Sci & Technol, Dept Appl Comp Sci, Al Mickiewicza 30, PL-30059 Krakow, Poland
基金
美国国家卫生研究院;
关键词
benchmarking; genetic programming; machine learning; evolutionary algorithms; classification;
D O I
10.1145/3520304.3529056
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we compare performance of genetic programming-based symbolic classifiers on a novel synthetic machine learning benchmark called DIGEN. This framework and collection of 40 different classification problems was designed specifically to differentiate performance of leading machine learning methods.
引用
收藏
页码:276 / 279
页数:4
相关论文
共 50 条
  • [1] State-of-the-art Machine Learning Classifiers: A Comparative Study on health data
    Maqsood, Sadia
    Malik, Muhammad Sheraz Arshad
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (09): : 96 - 102
  • [2] A Comparative Study of State-of-the-Art Machine Learning Algorithms for Predictive Maintenance
    Silvestrin, Luis P.
    Hoogendoorn, Mark
    Koole, Ger
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 760 - 767
  • [3] Benchmark of Automated Machine Learning with State-of-the-Art Image Segmentation Algorithms for Tool Condition Monitoring
    Lutz, B.
    Reisch, R.
    Kisskalt, D.
    Avci, B.
    Regulin, D.
    Knoll, A.
    Franke, J.
    [J]. 30TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING (FAIM2021), 2020, 51 : 215 - 221
  • [4] Machine learning in critical care: state-of-the-art and a sepsis case study
    Alfredo Vellido
    Vicent Ribas
    Carles Morales
    Adolfo Ruiz Sanmartín
    Juan Carlos Ruiz Rodríguez
    [J]. BioMedical Engineering OnLine, 17
  • [5] Machine learning in critical care: state-of-the-art and a sepsis case study
    Vellido, Alfredo
    Ribas, Vicent
    Morales, Carles
    Ruiz Sanmartin, Adolfo
    Ruiz Rodriguez, Juan Carlos
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2018, 17
  • [6] A Comparative Study of State-of-the-Art Deep Learning Algorithms for Vehicle Detection
    Wang, Hai
    Yu, Yijie
    Cai, Yingfeng
    Chen, Xiaobo
    Chen, Long
    Liu, Qingchao
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2019, 11 (02) : 82 - 95
  • [7] A BENCHMARK OF STATE-OF-THE-ART SOUND EVENT DETECTION SYSTEMS EVALUATED ON SYNTHETIC SOUNDSCAPES
    Ronchini, Francesca
    Serizel, Romain
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1031 - 1035
  • [8] High-Accuracy Wireless Traffic Prediction: A GP-Based Machine Learning Approach
    Xu, Yue
    Xu, Wenjun
    Yin, Feng
    Lin, Jiaru
    Cui, Shuguang
    [J]. GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [9] Machine Learning in Healthcare Analytics: A State-of-the-Art Review
    Das, Surajit
    Nayak, Samaleswari P.
    Sahoo, Biswajit
    Nayak, Sarat Chandra
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (07) : 3923 - 3962
  • [10] Machine learning in additive manufacturing: State-of-the-art and perspectives
    Wang, C.
    Tan, X. P.
    Tor, S. B.
    Lim, C. S.
    [J]. ADDITIVE MANUFACTURING, 2020, 36