Text Classification of Flu-related Tweets Using FastText with Sentiment and Keyword Features

被引:12
|
作者
Alessa, Ali [1 ]
Faezipour, Miad [1 ,2 ]
Alhassan, Zakhriya [3 ]
机构
[1] Univ Bridgeport, Comp Sci & Engn Dept, Sch Engn, Bridgeport, CT 06601 USA
[2] Univ Bridgeport, Biomed Engn Dept, Sch Engn, Bridgeport, CT USA
[3] Univ Durham, Comp Sci Dept, Sch Engn & Comp Sci, Durham, England
关键词
fastText; flu tweet classification; topic-related-keywords; sentiment; Social Networking Site;
D O I
10.1109/ICHI.2018.00058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we present a framework for flu-prediction/detection based on the available data of Social Networking Sites (SNS). The framework uses a state-of-the-art text classifier, which is FastText, to classify Twitter posts into flu-related or flu-unrelated posts. The FastText based framework is trained and tested using a pre-labeled dataset and utilizing the features of sentiment analysis and predefined keyword occurrences in addition to textual features. Results show that the framework improves the accuracy, in addition to the efficiency of flu disease surveillance systems that use unstructured data such as posts of Social Networking Sites.
引用
收藏
页码:366 / 367
页数:2
相关论文
共 50 条
  • [1] Sentiment Classification of Crisis Related Tweets using Segmentation
    Lalrempuii, Candy
    Mittal, Namita
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATICS AND ANALYTICS (ICIA' 16), 2016,
  • [2] Sentiment Classification of Tweets using Hierarchical Classification
    Baqapuri, Afroze Ibrahim
    Saleh, Saad
    Ilyas, Muhammad U.
    Khan, Muhammad Murtaza
    Qamar, Ali Mustafa
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
  • [3] TEXT CLASSIFICATION FOR SUICIDE RELATED TWEETS
    Chiroma, Fatima
    Liu, Han
    Cocea, Mihaela
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2018, : 587 - 592
  • [4] Sentiment Classification of Tweets with Non-Language Features
    Akilandeswari, J.
    Jothi, G.
    [J]. 8TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2018), 2018, 143 : 426 - 433
  • [5] A Comparison of fastText Implementations Using Arabic Text Classification
    Alghamdi, Nuha
    Assiri, Fatmah
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 306 - 311
  • [6] Sentiment Classification Using fastText Embedding and Deep Learning Model
    Khasanah, Isnaini Nurul
    [J]. AI IN COMPUTATIONAL LINGUISTICS, 2021, 189 : 343 - 350
  • [7] Medical-Based Text Classification Using FastText Features and CNN-LSTM Model
    Zeghdaoui, Mohamed Walid
    Boussaid, Omar
    Bentayeb, Fadila
    Joly, Frederik
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2021, PT I, 2021, 12923 : 155 - 167
  • [8] Sentiment analysis using various machine learning algorithms for disaster related tweets classification
    Sudha, S. Baby
    Dhanalakshmi, S.
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2023, 11 (04) : 390 - 417
  • [9] Sentiment polarity classification of tweets using an extended dictionary
    Vargas-Calderon, Vladimir
    Vargas Sanchez, Nelson A.
    Calderon-Benavides, Liliana
    Camargo, Jorge E.
    [J]. INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2018, 21 (62): : 1 - 11
  • [10] ENHANCED SENTIMENT CLASSIFICATION USING GEO LOCATION TWEETS
    Phand, Shital Anil
    Chakkarwar, V. A.
    [J]. PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 881 - 886