Generalized inverse participation numbers in metallic-mean quasiperiodic systems

被引:8
|
作者
Thiem, S. [1 ]
Schreiber, M. [1 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
来源
EUROPEAN PHYSICAL JOURNAL B | 2011年 / 83卷 / 04期
关键词
WAVE-FUNCTIONS; CANTOR-SET; SPECTRUM; CRYSTAL; DIFFUSION;
D O I
10.1140/epjb/e2011-20323-7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
From the quantum mechanical point of view, the electronic characteristics of quasicrystals are determined by the nature of their eigenstates. A practicable way to obtain information about the properties of these wave functions is studying the scaling behavior of the generalized inverse participation numbers Z(q) similar to N-Dq(q-1) with the system size N. In particular, we investigate d-dimensional quasiperiodic models based on different metallic-mean quasiperiodic sequences. We obtain the eigenstates of the one-dimensional metallic-mean chains by numerical calculations for a tight-binding model. Higher dimensional solutions of the associated generalized labyrinth tiling are then constructed by a product approach from the one-dimensional solutions. Numerical results suggest that the relation D-q(dd) = dD(q)(1d) holds for these models. Using the product structure of the labyrinth tiling we prove that this relation is always satisfied for the silver-mean model and that the scaling exponents approach this relation for large system sizes also for the other metallic-mean systems.
引用
收藏
页码:415 / 421
页数:7
相关论文
共 50 条
  • [1] Generalized inverse participation numbers in metallic-mean quasiperiodic systems
    S. Thiem
    M. Schreiber
    [J]. The European Physical Journal B, 2011, 83 : 415 - 421
  • [2] Photonic properties of metallic-mean quasiperiodic chains
    S. Thiem
    M. Schreiber
    [J]. The European Physical Journal B, 2010, 76 : 339 - 345
  • [3] Photonic properties of metallic-mean quasiperiodic chains
    Thiem, S.
    Schreiber, M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2010, 76 (03): : 339 - 345
  • [4] Eigenstates in gain-loss systems of metallic-mean quasiperiodic chains
    Terao, Takamichi
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2023, 444
  • [5] Light transmission through metallic-mean quasiperiodic stacks with oblique incidence
    Thiem, Stefanie
    Schreiber, Michael
    Grimm, Uwe
    [J]. PHILOSOPHICAL MAGAZINE, 2011, 91 (19-21) : 2801 - 2810
  • [6] Metallic-mean quasicrystals as aperiodic approximants of periodic crystals
    Joichiro Nakakura
    Primož Ziherl
    Junichi Matsuzawa
    Tomonari Dotera
    [J]. Nature Communications, 10
  • [7] Metallic-mean quasicrystals as aperiodic approximants of periodic crystals
    Nakakura, Joichiro
    Ziherl, Primoz
    Matsuzawa, Junichi
    Dotera, Tomonari
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] Fourfold metallic-mean quasicrystals as aperiodic approximants of the square lattice
    Nakakura, Joichiro
    Ziherl, Primoz
    Dotera, Tomonari
    [J]. PHYSICAL REVIEW B, 2024, 110 (01)
  • [9] Generalized inverse participation ratio as a possible measure of localization for interacting systems
    Murphy, N. C.
    Wortis, R.
    Atkinson, W. A.
    [J]. PHYSICAL REVIEW B, 2011, 83 (18)
  • [10] A note on condition numbers for generalized inverse AT,S(2) and constrained linear systems
    Liu, Gang
    Lu, Shengqi
    Chen, Juping
    Xu, Wei
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3199 - 3206