COLEMAN'S L-INVARIANT AND FAMILIES OF MODULAR FORMS

被引:0
|
作者
Stevens, Glenn [1 ]
机构
[1] Boston Univ, Coll Arts & Sci, Boston, MA 02215 USA
关键词
p-adic L-functions; modular forms; periods of modular forms; ADIC L-FUNCTIONS; SWINNERTON-DYER; BIRCH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the conjecture of Mazur, Tate, and Teitelbaum with Coleman's L-invariant for a newform f of arbitrary weight k(0) >= 2 of split multiplicative type at a prime p > 2. The key step in the proof is to show that Coleman's L-invariant is given by L(f) = -2p(k0/2)alpha'(k(0)), where alpha(k) is the eigenvalue of U(p) acting on the germ of a Coleman family f(k) passing through f at k = k(0).
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条