Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis

被引:4
|
作者
Makiela, Kamil [1 ]
Mazur, Blazej [2 ]
机构
[1] Cracow Univ Econ, Dept Econometr & Operat Res, Rakowicka 27, PL-31510 Krakow, Poland
[2] Cracow Univ Econ, Dept Empir Anal Econ Stabil, Rakowicka 27, PL-31510 Krakow, Poland
关键词
stochastic frontier analysis; Bayesian model averaging; Bayesian inference; model uncertainty; efficiency analysis; public policy; OUTPUT GROWTH; TECHNICAL INEFFICIENCY; PRODUCTIVITY CHANGE; INFERENCE; PANEL; EU;
D O I
10.3390/econometrics8020013
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper discusses Bayesian model averaging (BMA) in Stochastic Frontier Analysis and investigates inference sensitivity to prior assumptions made about the scale parameter of (in)efficiency. We turn our attention to the "standard" prior specifications for the popular normal-half-normal and normal-exponential models. To facilitate formal model comparison, we propose a model that nests both sampling models and generalizes the symmetric term of the compound error. Within this setup it is possible to develop coherent priors for model parameters in an explicit way. We analyze sensitivity of different prior specifications on the aforementioned scale parameter with respect to posterior characteristics of technology, stochastic parameters, latent variables and-especially-the models' posterior probabilities, which are crucial for adequate inference pooling. We find that using incoherent priors on the scale parameter of inefficiency has (i) virtually no impact on the technology parameters; (ii) some impact on inference about the stochastic parameters and latent variables and (iii) substantial impact on marginal data densities, which are crucial in BMA.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Forecast Combination and Bayesian Model Averaging: A Prior Sensitivity Analysis
    Feldkircher, Martin
    [J]. JOURNAL OF FORECASTING, 2012, 31 (04) : 361 - 376
  • [2] Model averaging estimators for the stochastic frontier model
    Christopher F. Parmeter
    Alan T. K. Wan
    Xinyu Zhang
    [J]. Journal of Productivity Analysis, 2019, 51 : 91 - 103
  • [3] Model averaging estimators for the stochastic frontier model
    Parmeter, Christopher F.
    Wan, Alan T. K.
    Zhang, Xinyu
    [J]. JOURNAL OF PRODUCTIVITY ANALYSIS, 2019, 51 (2-3) : 91 - 103
  • [4] Sensitivity analysis of stochastic frontier analysis models
    Sakouvogui, Kekoura
    Shaik, Saleem
    Doetkott, Curt
    Magel, Rhonda
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2021, 27 (01): : 71 - 90
  • [5] Bayesian stochastic frontier analysis using WinBUGS
    Jim E. Griffin
    Mark F. J. Steel
    [J]. Journal of Productivity Analysis, 2007, 27 : 163 - 176
  • [6] Bayesian clustering of distributions in stochastic frontier analysis
    Griffin, J. E.
    [J]. JOURNAL OF PRODUCTIVITY ANALYSIS, 2011, 36 (03) : 275 - 283
  • [7] Bayesian stochastic frontier analysis using WinBUGS
    Griffin, Jim E.
    Steel, Mark F. J.
    [J]. JOURNAL OF PRODUCTIVITY ANALYSIS, 2007, 27 (03) : 163 - 176
  • [8] Bayesian clustering of distributions in stochastic frontier analysis
    J. E. Griffin
    [J]. Journal of Productivity Analysis, 2011, 36 : 275 - 283
  • [9] An evaluation of prior influence on the predictive ability of Bayesian model averaging
    Véronique St-Louis
    Murray K. Clayton
    Anna M. Pidgeon
    Volker C. Radeloff
    [J]. Oecologia, 2012, 168 : 719 - 726
  • [10] An evaluation of prior influence on the predictive ability of Bayesian model averaging
    St-Louis, Veronique
    Clayton, Murray K.
    Pidgeon, Anna M.
    Radeloff, Volker C.
    [J]. OECOLOGIA, 2012, 168 (03) : 719 - 726