Quantifying parameter uncertainty in a large-scale glacier evolution model using Bayesian inference: application to High Mountain Asia

被引:39
|
作者
Rounce, David R. [1 ]
Khurana, Tushar [1 ,2 ]
Short, Margaret B. [3 ]
Hock, Regine [1 ]
Shean, David E. [2 ]
Brinkerhoff, Douglas J. [4 ]
机构
[1] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
[2] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[3] Univ Alaska Fairbanks, Coll Nat Sci & Math, Fairbanks, AK USA
[4] Univ Montana, Dept Comp Sci, Missoula, MT 59812 USA
关键词
Bayesian model; glaciers; mass change; High Mountain Asia; Markov chain Monte Carlo; parameter uncertainty; CHAIN MONTE-CARLO; SEA-LEVEL RISE; MASS-BALANCE; CLIMATE; PRECIPITATION; TEMPERATURE; ALTITUDE; IDENTIFIABILITY; PROJECTIONS;
D O I
10.1017/jog.2019.91
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The response of glaciers to climate change has major implications for sea-level change and water resources around the globe. Large-scale glacier evolution models are used to project glacier runoff and mass loss, but are constrained by limited observations, which result in models being over-parameterized. Recent systematic geodetic mass-balance observations provide an opportunity to improve the calibration of glacier evolution models. In this study, we develop a calibration scheme for a glacier evolution model using a Bayesian inverse model and geodetic mass-balance observations, which enable us to quantify model parameter uncertainty. The Bayesian model is applied to each glacier in High Mountain Asia using Markov chain Monte Carlo methods. After 10,000 steps, the chains generate a sufficient number of independent samples to estimate the properties of the model parameters from the joint posterior distribution. Their spatial distribution shows a clear orographic effect indicating the resolution of climate data is too coarse to resolve temperature and precipitation at high altitudes. Given the glacier evolution model is over-parameterized, particular attention is given to identifiability and the need for future work to integrate additional observations in order to better constrain the plausible sets of model parameters.
引用
收藏
页码:175 / 187
页数:13
相关论文
共 50 条
  • [1] Large-Scale Seasonal Changes in Glacier Thickness Across High Mountain Asia
    Wang, Qiuyu
    Yi, Shuang
    Chang, Le
    Sun, Wenke
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (20) : 10427 - 10435
  • [2] Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach
    Iizumi, Toshichika
    Yokozawa, Masayuki
    Nishimori, Motoki
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2009, 149 (02) : 333 - 348
  • [3] Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale: an application to High Mountain Asia
    Compagno, Loris
    Huss, Matthias
    Miles, Evan Stewart
    McCarthy, Michael James
    Zekollari, Harry
    Dehecq, Amaury
    Pellicciotti, Francesca
    Farinotti, Daniel
    [J]. CRYOSPHERE, 2022, 16 (05): : 1697 - 1718
  • [4] Quantifying uncertainty from large-scale model predictions of forest carbon dynamics
    Miehle, Peter
    Livesley, Stephen J.
    Li, Changsheng
    Feikema, Paul M.
    Adams, Mark A.
    Arndt, Stefan K.
    [J]. GLOBAL CHANGE BIOLOGY, 2006, 12 (08) : 1421 - 1434
  • [5] Glacier Mass Change in High Mountain Asia Through 2100 Using the Open-Source Python']Python Glacier Evolution Model (PyGEM)
    Rounce, David R.
    Hock, Regine
    Shean, David E.
    [J]. FRONTIERS IN EARTH SCIENCE, 2020, 7
  • [6] Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model
    Feyen, Luc
    Vrugt, Jasper A.
    Nuallain, Breanndan O.
    van der Knijff, Johan
    De Roo, Ad
    [J]. JOURNAL OF HYDROLOGY, 2007, 332 (3-4) : 276 - 289
  • [7] Estimation of parameter uncertainty for an activated sludge model using Bayesian inference: a comparison with the frequentist method
    Zonta, Zivko J.
    Flotats, Xavier
    Magri, Albert
    [J]. ENVIRONMENTAL TECHNOLOGY, 2014, 35 (13) : 1618 - 1629
  • [8] Optimal design of large-scale nonlinear Bayesian inverse problems under model uncertainty
    Alexanderian, Alen
    Nicholson, Ruanui
    Petra, Noemi
    [J]. INVERSE PROBLEMS, 2024, 40 (09)
  • [9] Parameter uncertainty analysis for large-scale hydrological model:challenges and comprehensive study framework
    Gou, Jiaojiao
    Miao, Chiyuan
    Xu, Zongxue
    Duan, Qingyun
    [J]. Shuikexue Jinzhan/Advances in Water Science, 2022, 33 (02): : 327 - 335
  • [10] Quantifying differences between OpenMP and MPI using a large-scale application suite
    Armstrong, B
    Kim, SW
    Eigenmann, R
    [J]. HIGH PERFORMANCE COMPUTING, PROCEEDINGS, 2000, 1940 : 482 - 493