Stabilizing Label Assignment for Speech Separation by Self-supervised Pre-training

被引:7
|
作者
Huang, Sung-Feng [1 ]
Chuang, Shun-Po [1 ]
Liu, Da-Rong [1 ]
Chen, Yi-Chen [1 ]
Yang, Gene-Ping [2 ]
Lee, Hung-yi [1 ]
机构
[1] Natl Taiwan Univ, Taipei, Taiwan
[2] Univ Edinburgh, Edinburgh, Midlothian, Scotland
来源
关键词
Speech Enhancement; Self-supervised Pre-train; Speech Separation; Label Permutation Switch;
D O I
10.21437/Interspeech.2021-763
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Speech separation has been well developed, with the very successful permutation invariant training (PIT) approach, although the frequent label assignment switching happening during PIT training remains to be a problem when better convergence speed and achievable performance are desired. In this paper, we propose to perform self-supervised pre-training to stabilize the label assignment in training the speech separation model. Experiments over several types of self-supervised approaches, several typical speech separation models and two different datasets showed that very good improvements are achievable if a proper self-supervised approach is chosen.
引用
收藏
页码:3056 / 3060
页数:5
相关论文
共 50 条
  • [1] Reducing Domain mismatch in Self-supervised speech pre-training
    Baskar, Murali Karthick
    Rosenberg, Andrew
    Ramabhadran, Bhuvana
    Zhang, Yu
    [J]. INTERSPEECH 2022, 2022, : 3028 - 3032
  • [2] Self-supervised ECG pre-training
    Liu, Han
    Zhao, Zhenbo
    She, Qiang
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [3] GUIDED CONTRASTIVE SELF-SUPERVISED PRE-TRAINING FOR AUTOMATIC SPEECH RECOGNITION
    Khare, Aparna
    Wu, Minhua
    Bhati, Saurabhchand
    Droppo, Jasha
    Maas, Roland
    [J]. 2022 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP, SLT, 2022, : 174 - 181
  • [4] COMPARISON OF SELF-SUPERVISED SPEECH PRE-TRAINING METHODS ON FLEMISH DUTCH
    Poncelet, Jakob
    Hamme, Hugo Van
    [J]. 2021 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU), 2021, : 169 - 176
  • [5] Self-supervised Pre-training for Mirror Detection
    Lin, Jiaying
    Lau, Rynson W. H.
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12193 - 12202
  • [6] EFFECTIVENESS OF SELF-SUPERVISED PRE-TRAINING FOR ASR
    Baevski, Alexei
    Mohamed, Abdelrahman
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 7694 - 7698
  • [7] Self-supervised Pre-training for Nuclei Segmentation
    Haq, Mohammad Minhazul
    Huang, Junzhou
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 303 - 313
  • [8] Investigating Self-supervised Pre-training for End-to-end Speech Translation
    Ha Nguyen
    Bougares, Fethi
    Tomashenko, Natalia
    Esteve, Yannick
    Besacier, Laurent
    [J]. INTERSPEECH 2020, 2020, : 1466 - 1470
  • [9] Self-Supervised Pre-training for Time Series Classification
    Shi, Pengxiang
    Ye, Wenwen
    Qin, Zheng
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [10] AN ADAPTER BASED PRE-TRAINING FOR EFFICIENT AND SCALABLE SELF-SUPERVISED SPEECH REPRESENTATION LEARNING
    Kessler, Samuel
    Thomas, Bethan
    Karout, Salah
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3179 - 3183