Non-parametric warping via local scale estimation for non-stationary Gaussian process modelling

被引:0
|
作者
Marmin, Sebastien [1 ,3 ,5 ]
Baccou, Jean [1 ,2 ]
Liandrat, Jacques [5 ]
Ginsbourger, David [3 ,4 ]
机构
[1] Inst Radioprotect & Surete Nucl, BP 3, F-13115 St Paul Les Durance, France
[2] UM, CNRS, IRSN, Lab Micromecan & Integrite Struct, BP 3, F-13115 St Paul Les Durance, France
[3] Univ Bern, Inst Math Stat & Actuarial Sci, Alpeneggstr 22, CH-3012 Bern, Switzerland
[4] Idiap Res Inst, Ctr Parc,Rue Marconi 19,POB 592, CH-1920 Martigny, Switzerland
[5] Aix Marseille Univ, CNRS, UMR 7373, Cent Marseille,I2M, F-13453 Marseille, France
来源
WAVELETS AND SPARSITY XVII | 2017年 / 10394卷
关键词
Warping; stochastic processes; wavelets; local scale; safety analysis;
D O I
10.1117/12.2272408
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We tackle the problem of reconstructing functions possessing highly heterogeneous behaviour across the input space from scattered evaluations. Our main approach combines non-stationary Gaussian process (GP) modelling with wavelet local analysis. A warped GP model is assumed, and a novel stationarization algorithm is proposed that relies on successive inverse warpings based on local scale estimation. The approach is applied to two mechanical case studies highlighting promising prediction performance compared to state-of-the-art methods.
引用
收藏
页数:10
相关论文
共 50 条