Bayesian melding for estimating uncertainty in national HIV prevalence estimates

被引:55
|
作者
Alkema, L. [1 ]
Raftery, A. E. [1 ]
Brown, T. [2 ]
机构
[1] Univ Washington, Ctr Stat & Social Sci, Seattle, WA 98195 USA
[2] East West Ctr, Honolulu, HI 96848 USA
关键词
D O I
10.1136/sti.2008.029991
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Objective: To construct confidence intervals for HIV prevalence in countries with generalised epidemics. Methods: In the Bayesian melding approach, a sample of country-specific epidemic curves describing HIV prevalence over time is derived based on time series of antenatal clinic prevalence data and general information on the parameters that describe the HIV epidemic. The prevalence trends at antenatal clinics are calibrated to population-based HIV prevalence estimates from national surveys. For countries without population based estimates, a general calibration method is developed. Based on the sample of calibrated epidemic curves, we derive annual 95% confidence intervals for HIV prevalence. The curve that best represents the data at antenatal clinics and population-based surveys, as well as general information about the epidemic, is chosen to represent the best estimates and predictions. Results: We present results for urban areas in Haiti and Namibia to illustrate the estimates and confidence intervals that are derived with the methodology.
引用
收藏
页码:I11 / I16
页数:6
相关论文
共 50 条
  • [1] PROBABILISTIC PROJECTIONS OF HIV PREVALENCE USING BAYESIAN MELDING
    Alkema, Leontine
    Raftery, Adrian E.
    Clark, Samuel J.
    [J]. ANNALS OF APPLIED STATISTICS, 2007, 1 (01): : 229 - 248
  • [2] Estimating Uncertainty in the Revised Universal Soil Loss Equation via Bayesian Melding
    M. G. Falk
    R. J. Denham
    K. L. Mengersen
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2010, 15 : 20 - 37
  • [3] Estimating Uncertainty in the Revised Universal Soil Loss Equation via Bayesian Melding
    Falk, M. G.
    Denham, R. J.
    Mengersen, K. L.
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2010, 15 (01) : 20 - 37
  • [4] Assessing uncertainty in urban simulations using Bayesian melding
    Sevcikova, Hana
    Raftery, Adrian E.
    Waddell, Paul A.
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2007, 41 (06) : 652 - 669
  • [5] Estimates of age-specific reductions in HIV prevalence in Uganda: Bayesian melding estimation and probabilistic population forecast with an HIV-enabled cohort component projection model
    Clark, Samuel J.
    Thomas, Jason R.
    Bao, Le
    [J]. DEMOGRAPHIC RESEARCH, 2012, 27 : 743 - 774
  • [6] Minimizing uncertainty in prevalence estimates
    Patrone, Paul N.
    Kearsley, Anthony J.
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 205
  • [7] Estimating Motion Uncertainty with Bayesian ICP
    Maken, Fahira Afzal
    Ramos, Fabio
    Ott, Lionel
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 8602 - 8608
  • [8] The most severe HIV epidemic in Europe: Ukraine's national HIV prevalence estimates for 2007
    Kruglov, Y. V.
    Kobyshcha, Y. V.
    Salyuk, T.
    Varetska, O.
    Shakarishvili, A.
    Saldanha, V. P.
    [J]. SEXUALLY TRANSMITTED INFECTIONS, 2008, 84 : I37 - I41
  • [9] INCORPORATING SPATIAL VARIABILITY TO GENERATE SUB-NATIONAL ESTIMATES OF HIV PREVALENCE
    Cuadros, D.
    Mziray, E.
    Abu-Raddad, L.
    [J]. SEXUALLY TRANSMITTED INFECTIONS, 2015, 91 : A50 - A50
  • [10] Bayesian prediction of HIV prevalence
    Groenewald, PCN
    van der Merwe, AJ
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 1998, 32 (01) : 103 - 118