Scaling function, spectral function, and nucleon momentum distribution in nuclei

被引:27
|
作者
Antonov, A. N. [1 ]
Ivanov, M. V. [1 ,2 ]
Caballero, J. A. [3 ]
Barbaro, M. B. [4 ,5 ]
Udias, J. M. [2 ]
de Guerra, E. Moya [2 ]
Donnelly, T. W. [6 ,7 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria
[2] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Atom, Grp Fis Nucl, E-28040 Madrid, Spain
[3] Univ Seville, Dept Fis Atom Mol & Nucl, E-41080 Seville, Spain
[4] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[6] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[7] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW C | 2011年 / 83卷 / 04期
关键词
SHORT-RANGE CORRELATIONS; ELECTRON-SCATTERING; FINITE NUCLEI; DENSITY; APPROXIMATION; ORBITALS; SYSTEMS;
D O I
10.1103/PhysRevC.83.045504
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The link between the scaling function extracted from the analysis of (e, e') cross sections and the spectral function/momentum distribution in nuclei is revisited. Several descriptions of the spectral function based on the independent particle model are employed, together with the inclusion of nucleon correlations, and effects of the energy dependence arising from the width of the hole states are investigated. Although some of these approaches provide rough overall agreement with data, they are not found to be capable of reproducing one of the distinctive features of the experimental scaling function, namely its asymmetry. However, the addition of final-state interactions, incorporated in the present study using either relativistic mean-field theory or via a complex optical potential, does lead to asymmetric scaling functions in accordance with data. The present analysis seems to indicate that final-state interactions constitute an essential ingredient and are required to provide a proper description of the experimental scaling function.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Scaling function and nucleon momentum distribution
    Caballero, J. A.
    Barbaro, M. B.
    Antonov, A. N.
    Ivanov, M. V.
    Donnelly, T. W.
    PHYSICAL REVIEW C, 2010, 81 (05):
  • [2] ASYMPTOTIC SCALING FUNCTION AND NUCLEON MOMENTUM DISTRIBUTION IN FEW NUCLEON SYSTEMS
    ATTI, CCD
    PACE, E
    SALME, G
    NUCLEAR PHYSICS A, 1990, 508 : C349 - C354
  • [3] Nucleon momentum distribution extracted from the experimental scaling function
    Ivanov, M., V
    Antonov, A. N.
    Caballero, J. A.
    NUCLEAR PHYSICS A, 2020, 1003
  • [4] Nucleon-nucleon momentum correlation function for light nuclei
    Ma, Y. G.
    Cai, X. Z.
    Chen, J. G.
    Fang, D. Q.
    Guo, W.
    Liu, G. H.
    Ma, C. W.
    Ma, E. J.
    Shen, W. Q.
    Shi, Y.
    Su, Q. M.
    Tian, W. D.
    Wang, H. W.
    Wang, K.
    Wei, Y. B.
    Yan, T. Z.
    NUCLEAR PHYSICS A, 2007, 790 : 299C - 302C
  • [5] Prescriptions for the scaling variable of the nucleon structure function in nuclei
    Ryazanov, V. I.
    Birbrair, B. L.
    Ryskin, M. G.
    PHYSICS OF ATOMIC NUCLEI, 2007, 70 (12) : 2131 - 2137
  • [6] Prescriptions for the scaling variable of the nucleon structure function in nuclei
    V. I. Ryazanov
    B. L. Birbrair
    M. G. Ryskin
    Physics of Atomic Nuclei, 2007, 70 : 2131 - 2137
  • [7] Universality of many-body two-nucleon momentum distributions: Correlated nucleon spectral function of complex nuclei
    degli Atti, Claudio Ciofi
    Morita, Hiko
    PHYSICAL REVIEW C, 2017, 96 (06)
  • [8] The nucleon momentum distribution in light nuclei
    Ypsilantis, KN
    Grypeos, ME
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1995, 21 (12) : 1701 - 1714
  • [9] Superscaling, scaling functions, and nucleon momentum distributions in nuclei
    Antonov, AN
    Gaidarov, MK
    Ivanov, MV
    Kadrev, DN
    de Guerra, EM
    Sarriguren, P
    Udias, JM
    PHYSICAL REVIEW C, 2005, 71 (01):
  • [10] Nucleon-nucleon momentum-correlation function as a probe of the density distribution of valence neutrons in neutron-rich nuclei
    Cao, X. G.
    Cai, X. Z.
    Ma, Y. G.
    Fang, D. Q.
    Zhang, G. Q.
    Guo, W.
    Chen, J. G.
    Wang, J. S.
    PHYSICAL REVIEW C, 2012, 86 (04):