Joint User Association and Resource Allocation for Wireless Hierarchical Federated Learning With IID and Non-IID Data

被引:0
|
作者
Liu, Shengli [1 ]
Yu, Guanding [2 ]
Chen, Xianfu [3 ]
Bennis, Mehdi [4 ]
机构
[1] Zhejiang Univ City Coll, Sch Informat & Elect Engn, Hangzhou 310015, Peoples R China
[2] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[3] VTT Tech Res Ctr Finland, Oulu 90570, Finland
[4] Univ Oulu, Ctr Wireless Commun, Oulu 90540, Finland
关键词
Wireless communication; Data models; Resource management; Computational modeling; Servers; Mobile handsets; Convergence; User association; hierarchical federated learning; non-IID; data distribution; learning latency; COMMUNICATION-EFFICIENT;
D O I
10.1109/TWC.2022.3162595
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, hierarchical federated learning (HFL) over wireless multi-cell networks is proposed for large-scale model training while preserving data privacy. However, the imbalanced data distribution has a significant impact on the convergence rate and learning accuracy. In addition, a large learning latency is incurred due to the traffic load imbalance among base stations (BSs) and limited wireless resources. To cope with these challenges, we first provide an analysis of the model error and learning latency in wireless HFL. Then, joint user association and wireless resource allocation algorithms are investigated under independent identically distributed (IID) and non-IID training data, respectively. For the IID case, a learning latency aware strategy is designed to minimize the learning latency by optimizing user association and wireless resource allocation, where a mobile device selects the BS with the maximal uplink channel signal-to-noise ratio (SNR). For the non-IID case, the total data distribution distance and learning latency are jointly minimized to achieve the optimal user association and resource allocation. The results show that both data distribution and uplink channel SNR should be taken into consideration for user association in the non-IID case. Finally, the effectiveness of the proposed algorithms are demonstrated by the simulations.
引用
收藏
页码:7852 / 7866
页数:15
相关论文
共 50 条
  • [1] Joint User Association and Resource Allocation for Wireless Hierarchical Federated Learning with Non-IID Data
    Liu, Shengli
    Yu, Guanding
    Chen, Xianfu
    Bennis, Mehdi
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 74 - 79
  • [2] Joint Client Scheduling and Wireless Resource Allocation for Heterogeneous Federated Edge Learning With Non-IID Data
    Yin, Tong
    Li, Lixin
    Lin, Wensheng
    Ni, Tao
    Liu, Ying
    Xu, Haitao
    Han, Zhu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5742 - 5754
  • [3] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942
  • [4] Hierarchical Federated Learning with Adaptive Clustering on Non-IID Data
    Tian, Yuqing
    Zhang, Zhaoyang
    Yang, Zhaohui
    Jin, Richeng
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 627 - 632
  • [5] Adaptive Federated Learning on Non-IID Data With Resource Constraint
    Zhang, Jie
    Guo, Song
    Qu, Zhihao
    Zeng, Deze
    Zhan, Yufeng
    Liu, Qifeng
    Akerkar, Rajendra
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (07) : 1655 - 1667
  • [6] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [7] Non-IID Federated Learning
    Cao, Longbing
    IEEE INTELLIGENT SYSTEMS, 2022, 37 (02) : 14 - 15
  • [8] Federated learning on non-IID data: A survey
    Zhu, Hangyu
    Xu, Jinjin
    Liu, Shiqing
    Jin, Yaochu
    NEUROCOMPUTING, 2021, 465 : 371 - 390
  • [9] Federated Learning With Taskonomy for Non-IID Data
    Jamali-Rad, Hadi
    Abdizadeh, Mohammad
    Singh, Anuj
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8719 - 8730
  • [10] Adaptive Federated Learning With Non-IID Data
    Zeng, Yan
    Mu, Yuankai
    Yuan, Junfeng
    Teng, Siyuan
    Zhang, Jilin
    Wan, Jian
    Ren, Yongjian
    Zhang, Yunquan
    COMPUTER JOURNAL, 2023, 66 (11): : 2758 - 2772