ALL-PAIRS SHORTEST PATHS IN GEOMETRIC INTERSECTION GRAPHS

被引:0
|
作者
Chan, Timothy M. [1 ]
Skrepetos, Dimitrios [2 ]
机构
[1] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[2] Univ Waterloo, Cheriton Sch Comp Sci, Waterloo, ON, Canada
关键词
ENCLOSURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a simple and general algorithm for the all-pairs shortest paths (APSP) problem in unweighted geometric intersection graphs. Specifically we reduce the problem to the design of static data structures for offline intersection detection. Consequently we can solve APSP in unweighted intersection graphs of ii arbitrary disks in O (n(2) log n) time, axis-aligned line segments in O (n(2) log log n) time, arbitrary line segments in O n(7/3) log(n)(1/3) time. d-dimensional axis-aligned unit hypercubes w O (n(2) log logn) time for d and C) (n(2) log(d-3) n) time for d > 4, and d-dimensional axis-aligned boxes in O (n(2) log(d-1.5) n) time for d >= 2. We also reduce the single-source shortest paths (SSSP) problem in unweighted geometric intersection graphs to decremental intersection detection. Thus, we obtain an C) (n log n)-time SSSP algorithm in unweighted intersection graphs ofii axis-aligned line segments.
引用
收藏
页码:27 / 41
页数:15
相关论文
共 50 条
  • [1] All-Pairs Shortest Paths in Geometric Intersection Graphs
    Chan, Timothy M.
    Skrepetos, Dimitrios
    [J]. ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 253 - 264
  • [2] Dynamic approximate all-pairs shortest paths in undirected graphs
    Roditty, L
    Zwick, U
    [J]. 45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 499 - 508
  • [3] More Algorithms for All-Pairs Shortest Paths in Weighted Graphs
    Chan, Timothy M.
    [J]. STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 590 - 598
  • [4] MORE ALGORITHMS FOR ALL-PAIRS SHORTEST PATHS IN WEIGHTED GRAPHS
    Chan, Timothy M.
    [J]. SIAM JOURNAL ON COMPUTING, 2010, 39 (05) : 2075 - 2089
  • [5] All-pairs shortest paths algorithm for highdimensional sparse graphs
    Urakov, A. R.
    Timeryaev, T., V
    [J]. PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2013, 19 (01): : 84 - 92
  • [6] DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS IN UNDIRECTED GRAPHS
    Roditty, Liam
    Zwick, Uri
    [J]. SIAM JOURNAL ON COMPUTING, 2012, 41 (03) : 670 - 683
  • [7] All-pairs almost shortest paths
    Dor, D
    Halperin, S
    Zwick, U
    [J]. SIAM JOURNAL ON COMPUTING, 2000, 29 (05) : 1740 - 1759
  • [8] Communication Avoiding All-Pairs Shortest Paths Algorithm for Sparse Graphs
    Zhu, Lin
    Hua, Qiang-Sheng
    Jin, Hai
    [J]. 50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2021,
  • [9] A survey of the all-pairs shortest paths problem and its variants in graphs
    Reddy, K. R. Udaya Kumar
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2016, 8 (01) : 16 - 40
  • [10] FASTER ALGORITHMS FOR ALL-PAIRS APPROXIMATE SHORTEST PATHS IN UNDIRECTED GRAPHS
    Baswana, Surender
    Kavitha, Telikepalli
    [J]. SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2865 - 2896