The structure of Omega-matrix in nonlinear filters

被引:0
|
作者
Yau, SST
Rasoulian, A
机构
关键词
estimation algebra; Wei-Norman approach; Euler's operator; nonlinear filter;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The structure of Omega = (w(ij)), a matrix related to the estimation algebras in nonlinear filtering theory, plays a major role in determining the finite dimensionality of these algebras. In this paper we give a simple view of this important matrix, i.e. although the drift term f = (f(1.) f(2.) ..., f(n)) is a C-infinity function, the entries of Omega, w(ij) = partial derivative f(j)/partial derivative x(i) - partial derivative f(i)/partial derivative x(i) are polynomials.
引用
收藏
页码:1083 / 1087
页数:5
相关论文
共 50 条
  • [1] THE OMEGA-MATRIX
    LANGSEN, AL
    LOWENTHAL, F
    [J]. MANAGERIAL AND DECISION ECONOMICS, 1989, 10 (02) : 155 - 158
  • [2] NOTES ON OMEGA-MATRIX AND TAU-MATRIX
    HERSHKOWITZ, D
    BERMAN, A
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) : 169 - 183
  • [3] Explicit proof of an inequality related to the Omega-matrix
    Nishi, Tetsuo
    Oishi, Shin'ichi
    Takahashi, Norikazu
    [J]. IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2013, 4 (04): : 430 - 450
  • [5] Finite-dimensional filters with nonlinear drift .6. Linear structure of Omega
    Chen, J
    Yau, SST
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1996, 9 (04) : 370 - 385
  • [6] Nonlinear filters based on ordering by FFT structure
    Egiazarian, KO
    Astola, JT
    Atourian, SM
    Gevorkian, DZ
    [J]. NONLINEAR IMAGE PROCESSING VII, 1996, 2662 : 106 - 117
  • [7] Finite-dimensional filters with nonlinear drift. XII: Linear and constant structure of wong-matrix
    Wu, X
    Yau, SST
    Hu, GQ
    [J]. STOCHASTIC THEORY AND CONTROL, PROCEEDINGS, 2002, 280 : 507 - 518
  • [8] A New Strategy for Combining Nonlinear Kalman Filters With Smooth Variable Structure Filters
    Akhtar, Salman
    Setoodeh, Peyman
    Ahmed, Ryan
    Habibi, Saeid
    [J]. IEEE ACCESS, 2023, 11 : 146262 - 146281
  • [9] A matrix factorization-based structure for digital filters
    Li, Gana
    Chu, Jian
    Wu, Jun
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (10) : 5108 - 5112
  • [10] Recursive Multikernel Filters Exploiting Nonlinear Temporal Structure
    Van Vaerenbergh, Steven
    Scardapane, Simone
    Santamaria, Ignacio
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 2674 - 2678