Behavior of reactive powder concrete containing recycled glass powder reinforced by steel fiber

被引:9
|
作者
Hussain, Zainab Ali [1 ]
Aljalawi, Nada Mahdi Fawzi [1 ]
机构
[1] Univ Baghdad, Dept Civil Engn, Baghdad, Iraq
关键词
reactive powder concrete; recycled glass powder; micro steel fiber; flexural; compressive strength; CEMENTITIOUS MATERIALS; WASTE GLASS;
D O I
10.1515/jmbm-2022-0025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Environmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today's population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possible solutions to the environmental and economic issues. This study investigated the effect of partial substitution of cement with recycled glass powder (0, 15, 20, and 25%) by weight of cement at various ages (on compressive strength) after determining the optimal ratio of replacement. This optimal ratio is used to study its effect on some mechanical properties (such as flexural strength, absorption, and dry density) of reactive powder concrete containing 1% micro steel fiber (SRPC), and furthermore, utilizing steam curing for 5 h at 90 degrees C after hardening the sample directly. Reactive powder concrete (RPC) has been designed with the use of the local cement, silica fume, and super plasticizer with a water/cement ratio of 0.20 in order to achieve a compressive strength of 137.09 MPa at the age of 28 days. When recycled glass powder replacement (20%) was utilized, the findings revealed that the compressive strength of RPC improved by 4.2%, the flexural strength increased by 15.3%, the dry density increased by 0.61%, and the absorption was reduced by 32% at 28 days after the test results were compared to the reference mix.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 50 条
  • [1] Flexural behavior of reinforced concrete slabs containing recycled glass powder and steel fibers
    Mustafa, Tarek S.
    Mahmoud, Ahmed A.
    Mories, Enas M.
    El Beshlawy, Sherif A.
    STRUCTURES, 2023, 54 : 1491 - 1508
  • [2] Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete
    Algburi, Atheer H. M.
    Sheikh, M. Neaz
    Hadi, Muhammad N. S.
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2019, 13 (04) : 998 - 1006
  • [3] Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete
    Atheer H. M. Algburi
    M. Neaz Sheikh
    Muhammad N. S. Hadi
    Frontiers of Structural and Civil Engineering, 2019, 13 : 998 - 1006
  • [4] Creep behavior of steel fiber reinforced reactive powder concrete at high temperature
    Abid, Muhammad
    Hou, Xiaomeng
    Zheng, Wenzhong
    Hussain, Raja Rizwan
    Cao, Shaojun
    Lv, Zhihao
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 205 : 321 - 331
  • [5] Length Development of reactive powder concrete with recycled tyre steel fiber
    Raza, Syed Safdar
    Ali, Babar
    Noman, Muhammad
    Hussain, Iqrar
    MATERIALIA, 2022, 22
  • [6] Mechanical behavior of reactive powder concrete with glass powder substitute
    Kushartomo, Widodo
    Bali, Ika
    Sulaiman, Budi
    CIVIL ENGINEERING INNOVATION FOR A SUSTAINABLE, 2015, 125 : 617 - 622
  • [7] Understanding and eliminating of expansion caused by recycled glass fiber reinforced plastic powder in concrete
    Ma, Guowei
    Zhou, Boyu
    Zhang, Mo
    Sanjayan, Jay
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 347
  • [8] Strength, microstructure and nanomechanical properties of recycled aggregate concrete containing waste glass powder and steel slag powder
    Zhan, Pei-min
    Zhang, Xiao-xiang
    He, Zhi-hai
    Shi, Jin-yan
    Gencel, Osman
    Yen, Nguyen Thi Hai
    Wang, Guo-cai
    JOURNAL OF CLEANER PRODUCTION, 2022, 341
  • [9] Bearing capacity of steel fiber reinforced reactive powder concrete confined by spirals
    Wei Zhou
    Haibo Hu
    Materials and Structures, 2015, 48 : 2613 - 2628
  • [10] Bearing capacity of steel fiber reinforced reactive powder concrete confined by spirals
    Zhou, Wei
    Hu, Haibo
    MATERIALS AND STRUCTURES, 2015, 48 (08) : 2613 - 2628