Categorical Bernstein operators and the Boson-Fermion correspondence

被引:0
|
作者
Gonzalez, Nicolle S. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2020年 / 26卷 / 04期
关键词
HEISENBERG CATEGORIFICATION; VERTEX OPERATORS; REPRESENTATIONS;
D O I
10.1007/s00029-020-00558-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a conjecture of Cautis and Sussan providing a categorification of the Boson-Fermion correspondence as formulated by Frenkel and Kac. We lift the Bernstein operators to infinite chain complexes in Khovanov's Heisenberg category H and from them construct categorical analogues of the Kac-Frenkel fermionic vertex operators. These fermionic functors are then shown to satisfy categorical Clifford algebra relations, solving a conjecture of Cautis and Sussan. We also prove another conjecture of Cautis and Sussan demonstrating that the categorical Fock space representation of H is a direct summand of the regular representation by showing that certain infinite chain complexes are categorical Fock space idempotents. In the process, we enhance the graphical calculus of H by lifting various Littlewood-Richardson branching isomorphisms to the Karoubian envelope of H.
引用
收藏
页数:64
相关论文
共 50 条