Hailstorms are meteorological phenomena of great interest to the scientific community, owing to their socioeconomic impact, which is mainly on agricultural production. With its global coverage and high spatial and temporal resolution, satellite remote sensing can contribute to monitoring of such events through the development of appropriate techniques. This paper presents an extensive validation in the south of France of a hail detection tool (HDT) developed for the Middle Ebro Valley (MEV). The HDT is based on consecutive application of two filters, a convection mask (CM) and hail mask (HM), using spectral channels of the Meteosat Second Generation (MSG) satellite. The south of France is an ideal area for studying hailstorms, because there is a robust database of hail falls recorded by an extensive network of hailpads managed by the Association Nationale d'Etude et de Lutte contre les Fleaux Atmospheriques (ANELFA). The results show noticeably poorer performance of the HDT in France relative to that in the MEV, with probability of detection (POD) 60.4% and false alarm rate (FAR) 26.6%. For this reason, a new tool to suit the characteristics of hailstorms in France has been developed. The France Hail Detection Tool (FHDT) was developed using logistic regression from channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor of the MSG. The FHDT was validated, resulting in POD 69.3% and FAR 15.4%, thus improving hail detection in the study area as compared with the previous tool. The new tool was tested in a case study with satisfactory results, supporting its future practical application. (C) 2016 Elsevier B.V. All rights reserved.