Spoken Document Retrieval for Oral Presentations Integrating Global Document Similarities into Local Document Similarities

被引:0
|
作者
Nanjo, Hiroaki [1 ]
Iyonaga, Yusuke [1 ]
Yoshimi, Takehiko [1 ]
机构
[1] Ryukoku Univ, Fac Sci & Technol, Kyoto, Japan
关键词
Spoken document retrieval; oral presentation audio; local document; global document;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A spoken document retrieval (SDR) method for oral presentations is addressed. We propose an integration method of global information and local information based on a topic hierarchy of presentations. Specifically, for detecting a part of an oral presentation about one to two minutes (local document), we integrate similarities between a given query and longer units (global documents), for example a whole presentation, into a similarity between the given query and a local document contained in the global documents. For a short speech segment retrieval task from 604-hours presentation speech, we confirmed a statistical improvement of information retrieval performance.
引用
收藏
页码:1285 / 1288
页数:4
相关论文
共 50 条
  • [1] Interactive text retrieval based on document similarities
    Klose, A
    Nürnberger, A
    Kruse, R
    Hartmann, G
    Richards, M
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH PART A-SOLID EARTH AND GEODESY, 2000, 25 (08): : 649 - 654
  • [2] Experiments in spoken document retrieval
    Sparck-Jones, K
    Jones, GJF
    Foote, JT
    Young, SJ
    [J]. INFORMATION PROCESSING & MANAGEMENT, 1996, 32 (04) : 399 - 417
  • [3] An architecture for spoken document retrieval
    Terol, RM
    Martínez-Barco, P
    Palomar, M
    [J]. TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2004, 3206 : 505 - 511
  • [4] A NEURAL DOCUMENT LANGUAGE MODELING FRAMEWORK FOR SPOKEN DOCUMENT RETRIEVAL
    Yen, Li-Phen
    Wu, Zhen-Yu
    Chen, Kuan-Yu
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8139 - 8143
  • [5] Revisiting fisher kernels for document similarities
    Nyffenegger, Martin
    Chappelier, Jean-Cedric
    Gaussier, Eric
    [J]. MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 727 - 734
  • [6] Topic Modeling with Document Relative Similarities
    Du, Jianguang
    Jiang, Jing
    Song, Dandan
    Liao, Lejian
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3469 - 3475
  • [7] The THISL spoken document retrieval project
    Renals, S
    [J]. IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS, PROCEEDINGS VOL 2, 1999, : 1049 - 1051
  • [8] Probabilistic aspects in spoken document retrieval
    Macherey, W
    Viechtbauer, HJ
    Ney, H
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2003, 2003 (02) : 115 - 127
  • [9] New Approaches to Spoken Document Retrieval
    Martin Wechsler
    Eugen Munteanu
    Peter Schäuble
    [J]. Information Retrieval, 2000, 3 : 173 - 188
  • [10] Probabilistic Aspects in Spoken Document Retrieval
    Wolfgang Macherey
    Hans Jörg Viechtbauer
    Hermann Ney
    [J]. EURASIP Journal on Advances in Signal Processing, 2003