Thermal resistance optimization of GaN/substrate stacks considering thermal boundary resistance and temperature-dependent thermal conductivity

被引:31
|
作者
Park, K.
Bayram, C. [1 ,2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Innovat COmpound Semicond ICOR Lab, Urbana, IL 61801 USA
关键词
ALGAN/GAN HEMTS; GAN; SCATTERING; LIMITS;
D O I
10.1063/1.4964711
中图分类号
O59 [应用物理学];
学科分类号
摘要
Here, we investigate the effects of thermal boundary resistance (TBR) and temperature-dependent thermal conductivity on the thermal resistance of GaN/substrate stacks. A combination of parameters such as substrates {diamond, silicon carbide, silicon, and sapphire}, thermal boundary resistance {10-60m(2)K/GW}, heat source lengths {10 nm-20 mu m}, and power dissipation levels {1-8W} are studied by using technology computer-aided design (TCAD) software Synopsys. Among diamond, silicon carbide, silicon, and sapphire substrates, the diamond provides the lowest thermal resistance due to its superior thermal conductivity. We report that due to non-zero thermal boundary resistance and localized heating in GaN-based high electron mobility transistors, an optimum separation between the heat source and substrate exists. For high power (i.e., 8W) heat dissipation on high thermal conductive substrates (i.e., diamond), the optimum separation between the heat source and substrate becomes submicron thick (i.e., 500 nm), which reduces the hotspot temperature as much as 50 degrees C compared to conventional multi-micron thick case (i.e., 4 mu m). This is attributed to the thermal conductivity drop in GaN near the heat source. Improving the TBR between GaN and diamond increases temperature reduction by our further approach. Overall, we provide thermal management design guidelines for GaN-based devices. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] THERMAL RESISTANCE OF HEAT SINKS WITH TEMPERATURE-DEPENDENT CONDUCTIVITY
    JOYCE, WB
    [J]. SOLID-STATE ELECTRONICS, 1975, 18 (04) : 321 - 322
  • [2] Optimal Thermal Resistance Model of GaN HEMTs Considering Thickness-Dependent Thermal Conductivity
    Ma, Xiao
    Wang, Kai
    Chen, Jingxiong
    Wang, Hong
    [J]. IEEE Transactions on Electron Devices, 2024, 71 (12) : 7326 - 7333
  • [3] Temperature-Dependent Thermal Resistance of GaN-on-Diamond HEMT Wafers
    Sun, Huarui
    Pomeroy, James W.
    Simon, Roland B.
    Francis, Daniel
    Faili, Firooz
    Twitchen, Daniel J.
    Kuball, Martin
    [J]. IEEE ELECTRON DEVICE LETTERS, 2016, 37 (05) : 621 - 624
  • [4] Effect of Temperature-Dependent Thermal Conductivity on Spreading Resistance in Flux Channels
    Al-Khamaiseh, Belal
    Muzychka, Yuri S.
    Kocabiyik, Serpil
    [J]. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2019, 33 (01) : 23 - 31
  • [5] Thermal conductivity and thermal boundary resistance of nanostructures
    Termentzidis, Konstantinos
    Parasuraman, Jayalakshmi
    Da Cruz, Carolina Abs
    Merabia, Samy
    Angelescu, Dan
    Marty, Frederic
    Bourouina, Tarik
    Kleber, Xavier
    Chantrenne, Patrice
    Basset, Philippe
    [J]. NANOSCALE RESEARCH LETTERS, 2011, 6
  • [6] Thermal conductivity and thermal boundary resistance of nanostructures
    Konstantinos Termentzidis
    Jayalakshmi Parasuraman
    Carolina Abs Da Cruz
    Samy Merabia
    Dan Angelescu
    Frédéric Marty
    Tarik Bourouina
    Xavier Kleber
    Patrice Chantrenne
    Philippe Basset
    [J]. Nanoscale Research Letters, 6
  • [7] Thermal Conductivity of Oxide Scale Thermally Grown on Iron Substrate Corrected by Temperature-dependent Interfacial Thermal Resistance in Laser Flash Measurement
    Li, Mu
    Endo, Rie
    Akoshima, Megumi
    Tanei, Hiroshi
    Okada, Hikaru
    Susa, Masahiro
    [J]. ISIJ INTERNATIONAL, 2019, 59 (03) : 398 - 403
  • [8] THE IMPACT OF GaN/SUBSTRATE THERMAL BOUNDARY RESISTANCE ON A HEMT DEVICE
    Nochetto, Horacio C.
    Jankowski, Nicholas R.
    Bar-Cohen, Avram
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 10, PTS A AND B, 2012, : 241 - 249
  • [9] Assessment of Temperature-Dependent Conductivity Effects on the Thermal Spreading/Constriction Resistance of Semiconductors
    Rahmani, Yousef
    Shokouhmand, Hossein
    [J]. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2012, 26 (04) : 638 - 643
  • [10] GaN HEMT junction temperature dependence on diamond substrate anisotropy and thermal boundary resistance
    Nochetto, Horacio C.
    Jankowski, Nicholas R.
    Bar-Cohen, Avram
    [J]. 2012 IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM (CSICS), 2012,