Quantifying Information Flow in Chemical Reaction Networks

被引:2
|
作者
Kahramanogullari, Ozan [1 ,2 ]
机构
[1] Univ Trento, Dept Math, Trento, Italy
[2] Univ Trento, Micrososft Res, Ctr Computat & Syst Biol, Rovereto, Italy
关键词
Chemical reaction networks; Stochastic simulation; Flux; STOCHASTIC SIMULATION; FLUCTUATIONS; ABUNDANCE; SYSTEMS;
D O I
10.1007/978-3-319-58163-7_11
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We introduce an efficient algorithm for stochastic flux analysis of chemical reaction networks (CRN) that improves our previously published method for this task. The flux analysis algorithm extends Gillespie's direct method, commonly used for stochastically simulating CRNs with respect to mass action kinetics. The extension to the direct method involves only book-keeping constructs, and does not require any labeling of network species. We provide implementations, and illustrate on examples that our algorithm for stochastic flux analysis provides a means for quantifying information flow in CRNs. We conclude our discussion with a case study of the biochemical mechanism of gemcitabine, a prodrug widely used for treating various carcinomas.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 50 条
  • [1] Quantifying Information of Dynamical Biochemical Reaction Networks
    Jiang, Zhiyuan
    Su, You-Hui
    Yin, Hongwei
    [J]. ENTROPY, 2023, 25 (06)
  • [2] Information thermodynamics for deterministic chemical reaction networks
    Penocchio, Emanuele
    Avanzini, Francesco
    Esposito, Massimiliano
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (03):
  • [3] Quantifying information flow
    Lowe, G
    [J]. 15TH IEEE COMPUTER SECURITY FOUNDATION WORKSHOP, PROCEEDINGS, 2002, : 18 - 31
  • [4] THE FLOW TOPOLOGY OF CHEMICAL-REACTION NETWORKS
    KING, RB
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1982, 98 (02) : 347 - 368
  • [5] Information geometric bound on general chemical reaction networks
    Mizohata, Tsuyoshi
    Kobayashi, Tetsuya J.
    Bouchard, Louis-S.
    Miyahara, Hideyuki
    [J]. PHYSICAL REVIEW E, 2024, 109 (04)
  • [6] Complex chemical reaction networks for future information processing
    Csizi, Katja-Sophia
    Lortscher, Emanuel
    [J]. FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [7] Quantifying information flow with beliefs
    Clarkson, Michael R.
    Myers, Andrew C.
    Schneider, Fred B.
    [J]. JOURNAL OF COMPUTER SECURITY, 2009, 17 (05) : 655 - 701
  • [8] Transfer entropy in magnetoencephalographic data: Quantifying information flow in cortical and cerebellar networks
    Wibral, Michael
    Rahm, Benjamin
    Rieder, Maria
    Lindner, Michael
    Vicente, Raul
    Kaiser, Jochen
    [J]. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2011, 105 (1-2): : 80 - 97
  • [9] Quantifying Information Flow for Dynamic Secrets
    Mardziel, Piotr
    Alvim, Mario S.
    Hicks, Michael
    Clarkson, Michael R.
    [J]. 2014 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP 2014), 2014, : 540 - 555
  • [10] Quantifying Information Flow During Emergencies
    Liang Gao
    Chaoming Song
    Ziyou Gao
    Albert-László Barabási
    James P. Bagrow
    Dashun Wang
    [J]. Scientific Reports, 4