An Adaptive Bayesian Parameter Estimation of a Synchronous Generator Under Gross Errors

被引:35
|
作者
Xu, Yijun [1 ]
Mili, Lamine [1 ]
Korkali, Mert [2 ]
Chen, Xiao [3 ]
机构
[1] Virginia Polytech Inst & State Univ, Northern Virginia Ctr, Bradley Dept Elect & Comp Engn, Falls Church, VA 22043 USA
[2] Lawrence Livermore Natl Lab, Computat Engn Div, Livermore, CA 94550 USA
[3] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
基金
美国能源部;
关键词
Generators; Bayes methods; Probability density function; Power system dynamics; Parameter estimation; Adaptation models; Phasor measurement units; Bayesian approach; generator parameter estimation; importance sampling (IS); multifidelity surrogate; polynomial chaos expansion (PCE); DYNAMIC STATE ESTIMATION; UNCERTAINTY; INFERENCE;
D O I
10.1109/TII.2019.2950238
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Polynomial-chaos-expansion-based surrogate models have recently been advocated in the literature for power system dynamic parameter estimation. Regarding the estimation of the uncertain generator parameters, a Bayesian inference framework has been proposed based on a polynomial-based reduced-order representation of the synchronous machines using assumed parameter values. Then, the non-Gaussian posterior probability distribution functions (pdfs) of these parameters are recovered through the stochastic sampling approach efficiently. However, facing very large parameter errors, the reliability of the surrogate model decreases, yielding biased estimation results. To overcome this problem, this article develops a hierarchical Bayesian inference framework that processes the measurements provided by phasor measurement units, while making use of multifidelity surrogates together with the importance sampling method. The latter allows us to estimate in an efficient manner the posterior pdfs of the uncertain parameters through the normalized weights of the prior samples. To improve the accuracy of the posterior pdfs, an adaptive procedure is further adopted in the importance sampling for the gradual evolution of its proposal functions. The new proposals assist in fine-tuning the sample space and thereby help to construct surrogates with higher fidelity. Through an iterative process, this approach is able to estimate accurately and efficiently non-Gaussian posterior pdfs of the uncertain generator parameters subject to gross errors.
引用
收藏
页码:5088 / 5098
页数:11
相关论文
共 50 条
  • [1] Estimation of synchronous generator parameters using an adaptive parameter estimator
    Shakouri, H
    Karrari, M
    Malik, O
    [J]. 2005 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS, 1-3, 2005, : 2253 - 2258
  • [2] Synchronous Generator Testbed For Parameter Estimation
    Aljabrine, Abdulwahab
    Johnson, Brian K.
    Fischer, Normann
    [J]. 2021 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), 2021,
  • [3] Parameter estimation of a synchronous generator model under unbalanced operating conditions
    Geraldi Jr, Edson L.
    Fernandes, Tatiane C. C.
    Piardi, Artur B.
    Grilo, Ahda P.
    Ramos, Rodrigo A.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2020, 187
  • [4] Bayesian Inference for Thermal Model of Synchronous Generator-Part I: Parameter Estimation
    Pandey, Madhusudhan
    Lie, Bernt
    [J]. IEEE ACCESS, 2022, 10 : 103529 - 103537
  • [5] Conditioning analysis of parameter estimation in a synchronous generator
    Vélez-Reyes, M
    Jáuregui, L
    [J]. IEMDC 2001: IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, 2001, : 285 - 291
  • [6] A Hybrid Algorithm for Synchronous Generator Parameter Estimation
    Chen, Wei
    Gong, Qingwu
    Zhang, Lidan
    Chen, Huali
    Wang, Tao
    [J]. ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 2626 - +
  • [7] Parameter adaptive strategy for virtual synchronous generator control
    Ren, Hai-Peng
    Chen, Qi
    Zhang, Liang-Liang
    Li, Jie
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (12): : 2571 - 2580
  • [8] Two new methods for synchronous generator parameter estimation
    Agahi, H.
    Karrari, M.
    Mahmoodzadeh, A.
    [J]. 2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 1061 - +
  • [9] Parameter estimation of synchronous generator based on park model
    Sun, Li-Xia
    Ju, Ping
    Gao, Yun-Hua
    Shi, Ke-Qin
    Yang, Wen-Yu
    Zhen, Wei
    Liu, Bai-Si
    Wu, Lei
    [J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2009, 29 (19): : 50 - 56
  • [10] Parameter Estimation of the Synchronous Generator Exciter based on PSO
    Choi, HyungJoo
    Lee, HeungHo
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2014, : 529 - 534