Robust and efficient monolithic fluid-structure-interaction solvers

被引:16
|
作者
Langer, Ulrich [1 ]
Yang, Huidong [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, Altenberger Str 69, A-4040 Linz, Austria
关键词
fluid-structure interaction problems; monolithic solvers; preconditioner; algebraic multigrid; FINITE-ELEMENT FORMULATION; NAVIER-STOKES EQUATIONS; ALGORITHMS; MASS; SYSTEMS;
D O I
10.1002/nme.5214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We construct new robust and efficient preconditioned generalized minimal residual solvers for the monolithic linear systems of algebraic equations arising from the finite element discretization and Newton's linearization of the fully coupled fluid-structure interaction system of partial differential equations in the arbitrary Lagrangian-Eulerian formulation. We admit both linear elastic and nonlinear hyperelastic materials in the solid model and cover a large range of flows, for example, water, blood, and air, with highly varying density. The preconditioner is constructed in form of (L) over cap(D) over cap(U) over cap, where (L) over cap, (D) over cap, and (U) over cap are proper approximations to the matrices L, D, and U in the LDU block factorization of the fully coupled system matrix, respectively. The inverse of the corresponding Schur complement is approximated by applying a few cycles of a special class of algebraic multigrid methods to the perturbed fluid sub-problem, which is obtained by modifying corresponding entries in the original fluid matrix with an explicitly constructed approximation to the exact perturbation coming from the sparse matrix-matrix multiplications. The numerical studies presented impressively demonstrate the robustness and the efficiency of the preconditioner proposed in the paper. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:303 / 325
页数:23
相关论文
共 50 条
  • [1] A hybrid interface preconditioner for monolithic fluid–structure interaction solvers
    Mayr M.
    Noll M.H.
    Gee M.W.
    [J]. Advanced Modeling and Simulation in Engineering Sciences, 7 (1)
  • [2] Calculation of Fluid-Structure-Interaction
    Martini, Patrick
    [J]. KGK-KAUTSCHUK GUMMI KUNSTSTOFFE, 2014, 67 (11-12): : 12 - 14
  • [3] Slip flow fluid-structure-interaction
    van Rij, J.
    Harman, T.
    Ameel, T.
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 58 : 9 - 19
  • [4] Fluid-structure-interaction with the Boundary Element Method
    Nolte, B
    Gaul, L
    [J]. IMAC - PROCEEDINGS OF THE 17TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I AND II, 1999, 3727 : 496 - 502
  • [5] On the nonnormality of subiteration for a fluid-structure-interaction problem
    Van Brummelen, EH
    De Borst, R
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02): : 599 - 621
  • [6] Hemodynamics and Fluid-Structure-Interaction in a Virtual Heart
    Schenkel, Torsten
    Krittian, Sebastian
    Muehlhausen, Mark-Patrick
    Oertel, Herbert
    [J]. IT-INFORMATION TECHNOLOGY, 2010, 52 (05): : 250 - 257
  • [7] Parallel block-preconditioned monolithic solvers for fluid-structure interaction problems
    Jodlbauer, D.
    Langer, U.
    Wick, T.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 117 (06) : 623 - 643
  • [8] Topology optimization of fluid-structure-interaction problems in poroelasticity
    Andreasen, Casper Schousboe
    Sigmund, Ole
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 258 : 55 - 62
  • [9] Thermal Fluid-Structure-Interaction - Experimental and Numerical Analysis
    Gleim, Tobias
    Birken, Philipp
    Weiland, Matthias
    Kuhl, Detlef
    Meister, Andreas
    Wuensch, Olaf
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [10] Space/time multigrid for a fluid-structure-interaction problem
    van Brummelen, E. H.
    van der Zee, K. G.
    de Borst, R.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2008, 58 (12) : 1951 - 1971