Deep High-Order Tensor Convolutional Sparse Coding for Hyperspectral Image Classification

被引:17
|
作者
Cheng, Chunbo [1 ]
Li, Hong [2 ]
Peng, Jiangtao [3 ]
Cui, Wenjing [1 ]
Zhang, Liming [4 ]
机构
[1] Hubei Polytech Univ, Sch Math & Phys, Huangshi 435000, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[4] Univ Macau, Fac Sci & Technol, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Tensors; Convolutional codes; Hyperspectral imaging; Kernel; Image coding; Convolution; Deep high-order tensor convolutional sparse coding (CSC); deep learning; graph-based learning (GSL); hyperspectral image (HSI) classification; SPECTRAL-SPATIAL CLASSIFICATION; REPRESENTATION; NETWORK;
D O I
10.1109/TGRS.2021.3134682
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Most hyperspectral image (HSI) data exist in the form of tensor; the tensor representation preserves the potential spatial & x2013;spectral structure information compared with the vector representation, which can help improve the classification performance of HSI. In this article, a deep high-order tensor convolutional sparse coding (CSC) model is proposed, which can be used to train deep high-order filters. Based on the deep high-order tensor CSC model, a deep feature extraction network (DHTCSCNet) is constructed, which is used for feature extraction of HSIs. By combining the spectral & x2013;spatial feature and the features extracted by the proposed DHTCSCNet at each layer, a combined feature that incorporates shallow, deep, spectral, and spatial features can be obtained. Then, the graph-based learning (GSL) methods are used to classify the combined feature. Experimental results show that the DHTCSCNet can obtain better classification performance compared with other HSI classification methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Deep High-Order Tensor Sparse Representation for Hyperspectral Image Classification
    Cheng, Chunbo
    Zhang, Liming
    Li, Hong
    Cui, Wenjing
    Gao, Junbin
    Cun, Yuxiao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [2] Superpixel Tensor Sparse Coding for Structural Hyperspectral Image Classification
    Feng, Zhixi
    Wang, Min
    Yang, Shuyuan
    Liu, Zhi
    Liu, Linzan
    Wu, Bin
    Li, Hong
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) : 1632 - 1639
  • [3] High Order Tensor Formulation for Convolutional Sparse Coding
    Bibi, Adel
    Ghanem, Bernard
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1790 - 1798
  • [4] Hyperspectral Image Classification Combined with Convolutional Neural Network and Sparse Coding
    Sun Jinguang
    Li Yanbei
    Wei Xian
    Wang Wanli
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (18)
  • [5] A Two-Stage Convolutional Sparse Coding Network for Hyperspectral Image Classification
    Cheng, Chunbo
    Peng, Jiangtao
    Cui, Wenjing
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [6] Kernel Tensor Sparse Coding Model for Precise Crop Classification of UAV Hyperspectral Image
    Yang, Lixia
    Zhang, Rui
    Bao, Yajun
    Yang, Shuyuan
    Jiao, Licheng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [7] Discriminative Tensor Sparse Coding for Image Classification
    Zhang, Yangmuzi
    Jiang, Zhuolin
    Davis, Larry S.
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
  • [8] CONVOLUTIONAL SPARSE CODING CLASSIFICATION MODEL FOR IMAGE CLASSIFICATION
    Chen, Boheng
    Li, Jie
    Ma, Biyun
    Wei, Gang
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1918 - 1922
  • [9] Image classification via convolutional sparse coding
    Nozaripour, Ali
    Soltanizadeh, Hadi
    [J]. VISUAL COMPUTER, 2023, 39 (05): : 1731 - 1744
  • [10] Image classification via convolutional sparse coding
    Ali Nozaripour
    Hadi Soltanizadeh
    [J]. The Visual Computer, 2023, 39 : 1731 - 1744