Improving the Accuracy of Gene Expression Profile Classification with Lorenz Curves and Gini Ratios

被引:2
|
作者
Quoc-Nam Tran [1 ]
机构
[1] Lamar Univ, Dept Comp Sci, Beaumont, TX 77710 USA
关键词
Microarray; data mining; MICROARRAYS;
D O I
10.1007/978-1-4419-7046-6_9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microarrays are a new technology with great potential to provide accurate medical diagnostics, help to find the right treatment for many diseases such as cancers, and provide a detailed genome-wide molecular portrait of cellular states. In this chapter, we show how Lorenz Curves and Gini Ratios can be modified to improve the accuracy of gene expression profile classification. Experimental results with different classification algorithms using additional techniques and strategies for improving the accuracy such as the principal component analysis, the correlation-based feature subset selection, and the consistency subset evaluation technique for the task of classifying lung adenocarcinomas from gene expression show that our method find more optimal genes than SAM.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [1] Gene expression profile classification: A review
    Asyali, Musa H.
    Colak, Dilek
    Demirkaya, Omer
    Inan, Mehmet S.
    [J]. CURRENT BIOINFORMATICS, 2006, 1 (01) : 55 - 73
  • [2] Diagnostic gene expression profile (GEP) for improving precision and molecular classification of hematological malignancies
    Cohen, Yossi
    Garach-Jehoshua, Osnat
    Bar-Chaim, Adina
    Gutwein, Odit
    Kornberg, Abraham
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2014, 34 : S97 - S97
  • [3] Improving Cancer Classification Accuracy Using Gene Pairs
    Chopra, Pankaj
    Lee, Jinseung
    Kang, Jaewoo
    Lee, Sunwon
    [J]. PLOS ONE, 2010, 5 (12):
  • [4] The Improvement of Accuracy of Gene Expression Data classification with Gene Ontology
    Qofrani, Elnaz
    Jalali, Mehrdad
    Kalani, Mohamad Reza
    [J]. 2014 INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK), 2014,
  • [5] Gene expression profile based classification models of psoriasis
    Guo, Pi
    Luo, Youxi
    Mai, Guoqin
    Zhang, Ming
    Wang, Guoqing
    Zhao, Miaomiao
    Gao, Liming
    Li, Fan
    Zhou, Fengfeng
    [J]. GENOMICS, 2014, 103 (01) : 48 - 55
  • [6] Tumor diameter contributes prognostic information that enhances the accuracy of gene expression profile molecular classification in uveal melanoma
    Walter, Scott
    Chao, Daniel L.
    Schiffman, Joyce C.
    Feuer, William J.
    Harbour, J. William
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [7] Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data
    Lokeswari Venkataramana
    Shomona Gracia Jacob
    Rajavel Ramadoss
    Dodda Saisuma
    Dommaraju Haritha
    Kunthipuram Manoja
    [J]. Genes & Genomics, 2019, 41 : 1301 - 1313
  • [8] Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data
    Venkataramana, Lokeswari
    Jacob, Shomona Gracia
    Ramadoss, Rajavel
    Saisuma, Dodda
    Haritha, Dommaraju
    Manoja, Kunthipuram
    [J]. GENES & GENOMICS, 2019, 41 (11) : 1301 - 1313
  • [9] Gene selection for leukemia subtype classification from gene expression profile
    Li, YX
    Zhu, YH
    Ruan, XG
    [J]. PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 1661 - 1664
  • [10] Tclass: tumor classification system based on gene expression profile
    Wuju, L
    Momiao, X
    [J]. BIOINFORMATICS, 2002, 18 (02) : 325 - 326