Application of Grid-enabled technologies for solving optimization problems in data-driven reservoir studies

被引:19
|
作者
Parashar, M [1 ]
Klie, H
Catalyurek, U
Kurc, T
Bangerth, W
Matossian, V
Saltz, J
Wheeler, MF
机构
[1] Rutgers State Univ, Dept Elect & Comp Engn, TASSL, Piscataway, NJ 08855 USA
[2] Univ Texas, CSM, ICES, Austin, TX 78712 USA
[3] Univ Texas, Inst Geophys, Austin, TX 78712 USA
[4] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
grid computing; optimization algorithms; distributed database;
D O I
10.1016/j.future.2004.09.028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents the use of numerical simulations coupled with optimization techniques in oil reservoir modeling and production optimization. We describe three main components of an autonomic oil production management framework. The framework implements a dynamic, data-driven approach and enables Grid-based large scale optimization formulations in reservoir modeling. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 50 条
  • [1] Application of grid-enabled technologies for solving optimization problems in data-driven reservoir studies
    Parashar, M
    Klie, H
    Catalyurek, U
    Kurc, T
    Matossian, V
    Saltz, J
    Wheeler, MF
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PT 3, PROCEEDINGS, 2004, 3038 : 805 - 812
  • [2] Observations in using Grid-enabled technologies for solving multi-objective optimization problems
    Luna, F.
    Nebro, A. J.
    Alba, E.
    [J]. PARALLEL COMPUTING, 2006, 32 (5-6) : 377 - 393
  • [3] Grid-enabled evolutionary algorithm application in the mechanical optimization problems
    Kus, Waclaw
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2007, 20 (05) : 629 - 636
  • [4] Grid-Enabled Tabu Search for Electromagnetic Optimization Problems
    Carcangiu, Sara
    Fanni, Alessandra
    Mereu, Anna
    Montisci, Augusto
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3265 - 3268
  • [5] A Grid-enabled problem-solving environment for advanced reservoir uncertainty analysis
    Lei, Zhou
    Allen, Gabrielle
    Chakraborty, Promita
    Huang, Dayong
    Lewis, John
    Li, Xin
    White, Christopher D.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2008, 20 (18): : 2123 - 2140
  • [6] On Nonstationary Gaussian Process Model for Solving Data-Driven Optimization Problems
    Hu, Caie
    Zeng, Sanyou
    Li, Changhe
    Zhao, Fei
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (04) : 2440 - 2453
  • [7] Grid-enabled software environment for enhanced dynamic data-driven visualization and navigation during image-guided neurosurgery
    Chrisochoides, Nikos
    Fedorov, Andriy
    Kot, Andriy
    Archip, Neculai
    Goldberg-Zimring, Daniel
    Kacher, Dan
    Whalen, Stephen
    Kikinis, Ron
    Jolesz, Ferenc
    Clatz, Olivier
    Warfield, Simon K.
    Black, Peter M.
    Golby, Alexandra
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 980 - +
  • [8] VLAM-G: Interactive data driven workflow engine for Grid-enabled resources
    Korkhov, Vladimir
    Vasyunin, Dmitry
    Wibisono, Adianto
    Belloum, Adam S. Z.
    Inda, Marcia A.
    Roos, Marco
    Breit, Timo M.
    Hertzberger, L. O.
    [J]. SCIENTIFIC PROGRAMMING, 2007, 15 (03) : 173 - 188
  • [9] DAME: Searching large data sets within a grid-enabled engineering application
    Austin, J
    Davis, R
    Fletcher, M
    Jackson, T
    Jessop, M
    Liang, B
    Pasley, A
    [J]. PROCEEDINGS OF THE IEEE, 2005, 93 (03) : 496 - 509
  • [10] Solving inverse problems using data-driven models
    Arridge, Simon
    Maass, Peter
    Oktem, Ozan
    Schonlieb, Carola-Bibiane
    [J]. ACTA NUMERICA, 2019, 28 : 1 - 174