ON OPTIMAL STOPPING PROBLEMS FOR MATRIX-EXPONENTIAL JUMP-DIFFUSION PROCESSES

被引:7
|
作者
Sheu, Yuan-Chung [1 ]
Tsai, Ming-Yao [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
关键词
Optimal stopping problem; American call-type reward function; averaging problem; matrix-exponential distribution; jump-diffusion process; LEVY PROCESSES; AMERICAN; OPTIONS;
D O I
10.1017/S0021900200009256
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider optimal stopping problems for a general class of reward functions under matrix-exponential jump-diffusion processes. Given an American call-type reward function in this class, following the averaging problem approach (see, for example, Alili and Kyprianou (2005), Kyprianou and Surya (2005), Novikov and Shiryaev (2007), and Surya (2007)), we give an explicit formula for solutions of the corresponding averaging problem. Based on this explicit formula, we obtain the optimal level and the value function for American call-type optimal stopping problems.
引用
收藏
页码:531 / 548
页数:18
相关论文
共 50 条
  • [1] Optimal Stopping Problem Associated with Jump-diffusion Processes
    Ishikawa, Yasushi
    [J]. STOCHASTIC ANALYSIS WITH FINANCIAL APPLICATIONS, HONG KONG 2009, 2011, 65 : 99 - 120
  • [2] Discounted optimal stopping for maxima of some jump-diffusion processes
    Gapeev, Pavel V.
    [J]. JOURNAL OF APPLIED PROBABILITY, 2007, 44 (03) : 713 - 731
  • [3] Optimal stopping problem for jump-diffusion processes with regime-switching
    Shao, Jinghai
    Tian, Taoran
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2021, 41
  • [4] Optimal stopping, free boundary, and American option in a jump-diffusion model
    Pham, H
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1997, 35 (02): : 145 - 164
  • [5] Optimal stopping, free boundary, and American option in a jump-diffusion model
    Pham H.
    [J]. Applied Mathematics and Optimization, 1997, 35 (2): : 145 - 164
  • [6] A MARKOV JUMP PROCESS ASSOCIATED WITH THE MATRIX-EXPONENTIAL DISTRIBUTION
    Peralta, Oscar
    [J]. JOURNAL OF APPLIED PROBABILITY, 2023, 60 (01) : 1 - 13
  • [7] Jump-diffusion processes on matrix Lie groups for Bayesian inference
    Srivastava, A
    Miller, MI
    Grenander, U
    [J]. PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1999, : 126 - 129
  • [8] Optimal portfolio model under compound jump-diffusion processes
    Shuping Wan
    [J]. Sixth Wuhan International Conference on E-Business, Vols 1-4: MANAGEMENT CHALLENGES IN A GLOBAL WORLD, 2007, : 1950 - 1954
  • [9] Optimal insurance control for insurers with jump-diffusion risk processes
    Tian, Linlin
    Bai, Lihua
    [J]. ANNALS OF ACTUARIAL SCIENCE, 2019, 13 (01) : 198 - 213
  • [10] Optimal Dividend Payouts Under Jump-Diffusion Risk Processes
    Zou, Jiezhong
    Zhang, Zhenzhong
    Zhang, Jiankang
    [J]. STOCHASTIC MODELS, 2009, 25 (02) : 332 - 347