Statistical Optimality in Multipartite Ranking and Ordinal Regression

被引:13
|
作者
Uematsu, Kazuki [1 ]
Lee, Yoonkyung [2 ]
机构
[1] Chemitox Inc, Yamanashi Testing Ctr, Hokuto, Yamanashi 4080103, Japan
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Bayes optimality; consistency; convex risk; multipartite ranking; ordinal regression; GENERALIZATION BOUNDS; CLASSIFICATION; AREA;
D O I
10.1109/TPAMI.2014.2360397
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Statistical optimality in multipartite ranking is investigated as an extension of bipartite ranking. We consider the optimality of ranking algorithms through minimization of the theoretical risk which combines pairwise ranking errors of ordinal categories with differential ranking costs. The extension shows that for a certain class of convex loss functions including exponential loss, the optimal ranking function can be represented as a ratio of weighted conditional probability of upper categories to lower categories, where the weights are given by the misranking costs. This result also bridges traditional ranking methods such as proportional odds model in statistics with various ranking algorithms in machine learning. Further, the analysis of multipartite ranking with different costs provides a new perspective on non-smooth listwise ranking measures such as the discounted cumulative gain and preference learning. We illustrate our findings with simulation study and real data analysis.
引用
收藏
页码:1080 / 1094
页数:15
相关论文
共 50 条
  • [1] Ordinal regression and ranking
    Computer Science Department, Universidade Federal de Minas Gerais, Antonio Carlos Av, Belo Horizonte
    6620, Brazil
    SpringerBriefs Comp. Sci., 9780857295248 (97-104):
  • [2] Ranking data with ordinal labels: optimality and pairwise aggregation
    Clemencon, Stephan
    Robbiano, Sylvain
    Vayatis, Nicolas
    MACHINE LEARNING, 2013, 91 (01) : 67 - 104
  • [3] Ranking data with ordinal labels: optimality and pairwise aggregation
    Stéphan Clémençon
    Sylvain Robbiano
    Nicolas Vayatis
    Machine Learning, 2013, 91 : 67 - 104
  • [4] Robust ordinal regression in preference learning and ranking
    Salvatore Corrente
    Salvatore Greco
    Miłosz Kadziński
    Roman Słowiński
    Machine Learning, 2013, 93 : 381 - 422
  • [5] Robust ordinal regression in preference learning and ranking
    Corrente, Salvatore
    Greco, Salvatore
    Kadzinski, Milosz
    Slowinski, Roman
    MACHINE LEARNING, 2013, 93 (2-3) : 381 - 422
  • [6] Extreme ranking analysis in robust ordinal regression
    Kadzinski, Milosz
    Greco, Salvatore
    Slowinski, Roman
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2012, 40 (04): : 488 - 501
  • [7] Bayesian ordinal regression for multiple criteria choice and ranking
    Ru, Zice
    Liu, Jiapeng
    Kadzinski, Milosz
    Liao, Xiuwu
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 299 (02) : 600 - 620
  • [8] Automatically Ranking Reviews Based on the Ordinal Regression Model
    Xu, Bing
    Zhao, Tie-Jun
    Wu, Jian-Wei
    Zhu, Cong-Hui
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT III, 2011, 7004 : 126 - 134
  • [9] ON THE STATISTICAL OPTIMALITY OF LOCALLY MONOTONIC REGRESSION
    RESTREPO, A
    BOVIK, AC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (06) : 1548 - 1550
  • [10] Statistical models and learning algorithms for ordinal regression problems
    Kanamori, Takafumi
    INFORMATION FUSION, 2013, 14 (02) : 199 - 207