Acceleration scheme for particle transport in kinetic Monte Carlo methods

被引:4
|
作者
Kaiser, Waldemar [1 ]
Goesswein, Manuel [1 ]
Gagliardi, Alessio [1 ]
机构
[1] Tech Univ Munich, Dept Elect & Comp Engn, Arcisstr 21, D-80333 Munich, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 152卷 / 17期
基金
欧盟地平线“2020”;
关键词
TAU-LEAPING SCHEMES; CHARGE-TRANSPORT; CRYSTAL-GROWTH; SIMULATION; DIFFUSION;
D O I
10.1063/5.0002289
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kinetic Monte Carlo (kMC) simulations are frequently used to study (electro-)chemical processes within science and engineering. kMC methods provide insight into the interplay of stochastic processes and can link atomistic material properties with macroscopic characteristics. Significant problems concerning the computational demand arise if processes with large time disparities are competing. Acceleration algorithms are required to make slow processes accessible. Especially, the accelerated superbasin kMC (AS-kMC) scheme has been frequently applied within chemical reaction networks. For larger systems, the computational overhead of the AS-kMC is significant as the computation of the superbasins is done during runtime and comes with the need for large databases. Here, we propose a novel acceleration scheme for diffusion and transport processes within kMC simulations. Critical superbasins are detected during the system initialization. Scaling factors for the critical rates within the superbasins, as well as a lower bound for the number of sightings, are derived. Our algorithm exceeds the AS-kMC in the required simulation time, which we demonstrate with a 1D-chain example. In addition, we apply the acceleration scheme to study the time-of-flight (TOF) of charge carriers within organic semiconductors. In this material class, time disparities arise due to a significant spread of transition rates. The acceleration scheme allows a significant acceleration up to a factor of 65 while keeping the error of the TOF values negligible. The computational overhead is negligible, as all superbasins only need to be computed once.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Local Temporal Acceleration Scheme to Couple Transport and Reaction Dynamics in Kinetic Monte Carlo Models of Electrochemical Systems
    Goesswein, Manuel
    Kaiser, Waldemar
    Gagliardi, Alessio
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (05) : 2749 - 2763
  • [2] Auroral particle transport using Monte Carlo and hybrid methods
    Solomon, SC
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A1) : 107 - 116
  • [3] A Metropolis scheme for Monte Carlo methods for the solution of particle population balance
    Wei, Jianming
    [J]. JOURNAL OF AEROSOL SCIENCE, 2015, 90 : 51 - 62
  • [4] MONTE CARLO PARTICLE NUMBERING SCHEME
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D'Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    [J]. Chinese Physics C., 2014, 38 (09) - 504
  • [5] Monte carlo particle numbering scheme
    L. Garren
    I. G. Knowles
    T. Sjöstrand
    T. Trippe
    [J]. The European Physical Journal C - Particles and Fields, 2000, 15 (1-4): : 205 - 207
  • [6] MONTE CARLO PARTICLE NUMBERING SCHEME
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D’Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    [J]. Chinese Physics C, 2014, (09) : 501 - 504
  • [7] Discussion of methods for the assessment of uncertainties in Monte Carlo particle transport calculations
    Siebert, BRL
    [J]. ADVANCED MATHEMATICAL & COMPUTATIONAL TOOLS IN METROLOGY IV, 2000, 53 : 220 - 229
  • [8] Acceleration of a Monte Carlo radiation transport code
    Hochstedler, RD
    Smith, LM
    [J]. SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM (STAIF-96), PTS 1-3: 1ST CONFERENCE ON COMMERCIAL DEVELOPMENT OF SPACE; 1ST CONFERENCE ON NEXT GENERATION LAUNCH SYSTEMS; 2ND SPACECRAFT THERMAL CONTROL SYMPOSIUM; 13TH SYMPOSIUM ON SPACE NUCLEAR POWER AND PROPULSION - FUTURE SPACE AND EARTH SCIENCE MISSIONS - SPECIAL TOPIC; REMOTE SENSING FOR COMMERCIAL, CIVIL AND SCIENCE APPLICATIONS - SPECIAL TOPIC, 1996, (361): : 1115 - 1119
  • [9] Acceleration of kinetic Monte Carlo simulation of particle breakage process during grinding with controlled accuracy
    Lu, Shaowen
    [J]. POWDER TECHNOLOGY, 2016, 301 : 186 - 196
  • [10] Review of Monte Carlo methods for particle transport in continuously-varying media
    Belanger, Hunter
    Mancusi, Davide
    Zoia, Andrea
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (11):