Convexity in triangular norm of fuzzy sets

被引:3
|
作者
Nourouzi, Kourosh [1 ]
Aghajani, Asadollah [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, Tehran, Iran
[2] Damghan Univ Sci, Dept Math, Damghan, Iran
关键词
D O I
10.1016/j.chaos.2006.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate some *-convexity properties of fuzzy sets, where * is a triangular norm on [0, 1]. Our main results extend some known results for convex fuzzy sets. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:883 / 889
页数:7
相关论文
共 50 条
  • [1] Triangular norm based graded convex fuzzy sets
    Pan, Xiaodong
    Meng, Dan
    [J]. FUZZY SETS AND SYSTEMS, 2012, 209 : 1 - 13
  • [2] Generalized fuzzy rough sets determined by a triangular norm
    Mi, Ju-Sheng
    Leung, Yee
    Zhao, Hui-Yin
    Feng, Tao
    [J]. INFORMATION SCIENCES, 2008, 178 (16) : 3203 - 3213
  • [3] On triangular norm-based generalized cardinals and singular fuzzy sets
    Dyczkowski, K
    Wygralak, M
    [J]. FUZZY SETS AND SYSTEMS, 2003, 133 (02) : 211 - 226
  • [4] Conditions for the t-norm extended mapping to preserve the convexity of fuzzy sets
    Ito, K
    [J]. FUZZY SETS AND SYSTEMS, 1996, 78 (03) : 333 - 336
  • [5] Convexity of hesitant fuzzy sets
    Janis, Vladimir
    Montes, Susana
    Rencova, Magdalena
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (04) : 2099 - 2102
  • [6] Convexity and semicontinuity of fuzzy sets
    Chen, J
    Syau, YR
    Ting, CJ
    [J]. FUZZY SETS AND SYSTEMS, 2004, 143 (03) : 459 - 469
  • [7] ON CONVEXITY OF FUZZY-SETS AND FUZZY RELATIONS
    XU, CW
    [J]. INFORMATION SCIENCES, 1992, 59 (1-2) : 91 - 102
  • [8] Convexity and upper semicontinuity of fuzzy sets
    Syau, YR
    Lee, ES
    Jia, LX
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (1-2) : 117 - 129
  • [9] Convexity on fuzzy partially ordered sets
    Liu, Hongping
    Wang, Shuang
    Fan, WenPing
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (04) : 3607 - 3617
  • [10] A Note on Prototypes, Convexity and Fuzzy Sets
    Norman Foo
    Boon Toh Low
    [J]. Studia Logica, 2008, 90 (1) : 125 - 137