Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants

被引:2
|
作者
Ng, Bernard [1 ,2 ,3 ]
Casazza, William [1 ,2 ,3 ]
Kim, Nam Hee [4 ]
Wang, Chendi [1 ,2 ,3 ]
Farhadi, Farnush [3 ]
Tasaki, Shinya [5 ]
Bennett, David A. [5 ]
De Jager, Philip L. [6 ,7 ]
Gaiteri, Christopher [5 ]
Mostafavi, Sara [1 ,2 ,8 ]
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Med Genet, Vancouver, BC, Canada
[3] Ctr Mol Med & Therapeut, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Comp Sci, Vancouver, BC, Canada
[5] Rush Univ, Rush Alzheimers Dis Ctr, Med Ctr, Chicago, IL USA
[6] Columbia Univ, Ctr Translat & Computat Neuroimmunol, Dept Neurol, Irving Med Ctr, New York, NY USA
[7] Columbia Univ, Taub Inst Res Alzheimers Dis & Aging Brain, Irving Med Ctr, New York, NY USA
[8] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
来源
PLOS GENETICS | 2021年 / 17卷 / 11期
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; DNA-METHYLATION; ALZHEIMERS-DISEASE; OXIDATIVE STRESS; PARKINSONS-DISEASE; LOCI; BRAIN; TRANSCRIPTOME; SCHIZOPHRENIA; EXPRESSION;
D O I
10.1371/journal.pgen.1009918
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic variation and another for linking cis epigenomic variation to gene expression. Applying these models in cascade to GWAS summary statistics generates gene level statistics that reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes. CEWAS thus presents a novel means for exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms. Author summary The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, combines the effect of genetic variants on DNA methylation as well as gene expression. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] cepip: context-dependent epigenomic weighting for prioritization of regulatory variants and disease-associated genes
    Mulin Jun Li
    Miaoxin Li
    Zipeng Liu
    Bin Yan
    Zhicheng Pan
    Dandan Huang
    Qian Liang
    Dingge Ying
    Feng Xu
    Hongcheng Yao
    Panwen Wang
    Jean-Pierre A. Kocher
    Zhengyuan Xia
    Pak Chung Sham
    Jun S. Liu
    Junwen Wang
    [J]. Genome Biology, 18
  • [2] cepip: context-dependent epigenomic weighting for prioritization of regulatory variants and disease-associated genes
    Li, Mulin Jun
    Li, Miaoxin
    Liu, Zipeng
    Yan, Bin
    Pan, Zhicheng
    Huang, Dandan
    Liang, Qian
    Ying, Dingge
    Xu, Feng
    Yao, Hongcheng
    Wang, Panwen
    Kocher, Jean-Pierre A.
    Xia, Zhengyuan
    Sham, Pak Chung
    Liu, Jun S.
    Wang, Junwen
    [J]. GENOME BIOLOGY, 2017, 18
  • [3] Validating GWAS Variants from Microglial Genes Implicated in Alzheimer’s Disease
    Lígia Ramos dos Santos
    Lúcia Helena Sagrillo Pimassoni
    Geralda Gillian Silva Sena
    Daniela Camporez
    Luciano Belcavello
    Maíra Trancozo
    Renato Lírio Morelato
    Flavia Imbroisi Valle Errera
    Maria Rita Passos Bueno
    Flavia de Paula
    [J]. Journal of Molecular Neuroscience, 2017, 62 : 215 - 221
  • [4] Validating GWAS Variants from Microglial Genes Implicated in Alzheimer's Disease
    dos Santos, Ligia Ramos
    Sagrillo Pimassoni, Lucia Helena
    Silva Sena, Geralda Gillian
    Camporez, Daniela
    Belcavello, Luciano
    Trancozo, Maria
    Morelato, Renato Lirio
    Valle Errera, Flavia Imbroisi
    Passos Bueno, Maria Rita
    de Paula, Flavia
    [J]. JOURNAL OF MOLECULAR NEUROSCIENCE, 2017, 62 (02) : 215 - 221
  • [5] Pathway analysis: The new way from GWAS to disease genes
    Nikamo, Pernilla
    Stahle, Mona
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2011, 131 : S70 - S70
  • [6] Analysis of Immune Regulatory Genes' Copy Number Variants in Graves' Disease
    Huber, Amanda K.
    Concepcion, Erlinda S.
    Gandhi, Alisha
    Menconi, Francesca
    Smith, Eric P.
    Keddache, Mehdi
    Tomer, Yaron
    [J]. THYROID, 2011, 21 (01) : 69 - 74
  • [7] A post-GWAS analysis of predicted regulatory variants and tuberculosis susceptibility
    Uren, Caitlin
    Henn, Brenna M.
    Franke, Andre
    Wittig, Michael
    van Heiden, Paul D.
    Hoal, Eileen G.
    Moller, Mario
    [J]. PLOS ONE, 2017, 12 (04):
  • [8] Integrative Epigenomic Analysis Identifies Enhancer Modifying Variants Linked to Cardiomyopathy Genes
    Gacita, Anthony M.
    Fullenkamp, Dominic
    Ohiri, Joyce C.
    Pottinger, Tess
    Puckelwartz, Megan
    Nobrega, Marcello A.
    McNally, Elizabeth M.
    [J]. CIRCULATION, 2020, 142
  • [9] Integrating genomic and epigenomic information: a promising strategy for identifying functional DNA variants of human disease
    Zaina, S.
    Lund, G.
    [J]. CLINICAL GENETICS, 2012, 81 (04) : 334 - 340
  • [10] The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases
    Ammar J. Alsheikh
    Sabrina Wollenhaupt
    Emily A. King
    Jonas Reeb
    Sujana Ghosh
    Lindsay R. Stolzenburg
    Saleh Tamim
    Jozef Lazar
    J. Wade Davis
    Howard J. Jacob
    [J]. BMC Medical Genomics, 15