共 50 条
Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock
被引:56
|作者:
Dange, Pooja
[1
]
Pandit, Soumya
[2
]
Jadhav, Dipak
[3
]
Shanmugam, Poojhaa
[1
]
Gupta, Piyush Kumar
[2
]
Kumar, Sanjay
[2
]
Kumar, Manu
[4
]
Yang, Yung-Hun
[5
,6
]
Bhatia, Shashi Kant
[5
,6
]
机构:
[1] Amity Univ, Amity Inst Biotechnol, Mumbai 4102016, Maharashtra, India
[2] Sharda Univ, Sch Basic Sci & Res, Dept Life Sci, Greater Noida 201306, India
[3] Maharashtra Inst Technol, Dept Agr Engn, Aurangabad 431010, Maharashtra, India
[4] Dongguk Univ Seoul, Dept Life Sci, 32 Dongguk Ro, Goyang Si 10326, South Korea
[5] Konkuk Univ, Inst Ubiquitous Informat Technol & Applicat, Seoul 05029, South Korea
[6] Konkuk Univ, Dept Biol Engn, Seoul 05029, South Korea
基金:
新加坡国家研究基金会;
关键词:
microbial electrolysis cells;
chronological development;
wastewater to hydrogen;
scale-up;
life-cycle assessment;
MEC commercialization;
HYDROGEN-PRODUCTION;
SINGLE-CHAMBER;
FUEL-CELLS;
METHANE PRODUCTION;
POWER-GENERATION;
BIOELECTROCHEMICAL SYSTEMS;
STAINLESS-STEEL;
BIOCATALYZED ELECTROLYSIS;
ANAEROBIC-DIGESTION;
DARK FERMENTATION;
D O I:
10.3390/su13168796
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Carbon constraints, as well as the growing hazard of greenhouse gas emissions, have accelerated research into all possible renewable energy and fuel sources. Microbial electrolysis cells (MECs), a novel technology able to convert soluble organic matter into energy such as hydrogen gas, represent the most recent breakthrough. While research into energy recovery from wastewater using microbial electrolysis cells is fascinating and a carbon-neutral technology that is still mostly limited to lab-scale applications, much more work on improving the function of microbial electrolysis cells would be required to expand their use in many of these applications. The present limiting issues for effective scaling up of the manufacturing process include the high manufacturing costs of microbial electrolysis cells, their high internal resistance and methanogenesis, and membrane/cathode biofouling. This paper examines the evolution of microbial electrolysis cell technology in terms of hydrogen yield, operational aspects that impact total hydrogen output in optimization studies, and important information on the efficiency of the processes. Moreover, life-cycle assessment of MEC technology in comparison to other technologies has been discussed. According to the results, MEC is at technology readiness level (TRL) 5, which means that it is ready for industrial development, and, according to the techno-economics, it may be commercialized soon due to its carbon-neutral qualities.
引用
收藏
页数:37
相关论文