Necessary and sufficient conditions for Farkas' lemma for cone systems and second-order cone programming duality

被引:0
|
作者
Jeyakumar, V. [1 ]
Kum, S. [2 ]
Lee, G. M. [3 ]
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Chungbuk Natl Univ, Dept Math Educ, Cheongju 361763, South Korea
[3] Pukyong Natl Univ, Dept Appl Math, Pusan 608737, South Korea
关键词
Farkas lemma; cone-convex systems; strong duality; closed cone condition; second-order cone programming;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present conditions, which completely characterize Farkas' lemma for cone-convex systems, and obtain strong duality characterizations for convex optimization problems. In particular, we establish a necessary and sufficient closed cone condition for the Farkas lemma. As an application, we obtain necessary and sufficient conditions for the strong duality of convex second-order cone programming problems.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 50 条
  • [1] Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming
    Andreani, Roberto
    Fukuda, Ellen H.
    Haeser, Gabriel
    Santos, Daiana O.
    Secchin, Leonardo D.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (01) : 1 - 33
  • [2] Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming
    Roberto Andreani
    Ellen H. Fukuda
    Gabriel Haeser
    Daiana O. Santos
    Leonardo D. Secchin
    Journal of Optimization Theory and Applications, 2024, 200 : 1 - 33
  • [3] Second-order cone programming
    Alizadeh, F
    Goldfarb, D
    MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 3 - 51
  • [4] Second-order cone programming
    F. Alizadeh
    D. Goldfarb
    Mathematical Programming, 2003, 95 : 3 - 51
  • [5] Complete characterizations of stable Farkas' lemma and cone-convex programming duality
    Jeyakumar, V.
    Lee, G. M.
    MATHEMATICAL PROGRAMMING, 2008, 114 (02) : 335 - 347
  • [6] Complete characterizations of stable Farkas’ lemma and cone-convex programming duality
    V. Jeyakumar
    G. M. Lee
    Mathematical Programming, 2008, 114 : 335 - 347
  • [7] SECOND ORDER SUFFICIENT CONDITIONS FOR A CLASS OF BILEVEL PROGRAMS WITH LOWER LEVEL SECOND-ORDER CONE PROGRAMMING PROBLEM
    Chi, Xiaoni
    Wan, Zhongping
    Hao, Zijun
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (04) : 1111 - 1125
  • [8] Applications of second-order cone programming
    Lobo, MS
    Vandenberghe, L
    Boyd, S
    Lebret, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 284 (1-3) : 193 - 228
  • [9] Second-order symmetric duality with cone constraints
    Gulati, T. R.
    Gupta, S. K.
    Ahmad, I.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 347 - 354
  • [10] Second-order variational analysis in second-order cone programming
    Hang, Nguyen T. V.
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) : 75 - 116