An Efficient Approach to Spatiotemporal Analysis and Modeling of Air Pollution Data

被引:3
|
作者
Tsiotas, Georgios [1 ]
Argiriou, Athanassios A. [2 ]
机构
[1] Univ Crete, Dept Econ, Rethimnon 74100, Greece
[2] Univ Patras, Dept Phys, Sect Appl Phys, Patras 26500, Greece
关键词
Gaussian maximum likelihood estimator; Innovation algorithm; Kriging; Spatiotemporal modeling; Urban pollution; MAXIMUM-LIKELIHOOD-ESTIMATION; STATISTICAL-ANALYSIS; POPULATION-DENSITY; OZONE EXPOSURE; HARRIS COUNTY; TEXAS;
D O I
10.1007/s13253-011-0057-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A statistically efficient approach is adopted for modeling spatial time-series of large data sets. The estimation of the main diagnostic tool such as the likelihood function in Gaussian spatiotemporal models is a cumbersome task when using extended spatial time-series such as air pollution. Here, using the Innovation Algorithm, we manage to compute it for many spatiotemporal specifications. These specifications refer to the spatial periodic-trend, the spatial autoregressive moving average, the spatial autoregressive integrated and fractionally integrated moving average Gaussian models. Our method is applied to daily pollutants over a large metropolitan area like Athens. In the applied part of our paper, we first diagnose temporal and spatial structures of data using non-likelihood based criteria, such as the empirical autocorrelation and covariance functions. Second, we use likelihood and non-likelihood based criteria to select a spatiotemporal model among various specifications. Finally, using kriging we regionalize the resulting parameter estimates of the best-fitted model in space at any unmonitored location in the Athens region. The results show that a specific autoregressive integrated moving average spatiotemporal model can optimally perform in within and out of spatial sample estimation. Supplemental materials for this article are available from the journal website.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 50 条
  • [1] An Efficient Approach to Spatiotemporal Analysis and Modeling of Air Pollution Data
    Georgios Tsiotas
    Athanassios A. Argiriou
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16 : 371 - 388
  • [2] Multi-Perspective Analysis and Spatiotemporal Mapping of Air Pollution Monitoring Data
    Kolovos, Alexander
    Skupin, Andre
    Jerrett, Michael
    Christakos, George
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (17) : 6738 - 6744
  • [3] Ambient Air Pollution and Preeclampsia: A Spatiotemporal Analysis
    Dadvand, Payam
    Figueras, Francesc
    Basagana, Xavier
    Beelen, Rob
    Martinez, David
    Cirach, Marta
    Schembari, Anna
    Hoek, Gerard
    Brunekreef, Bert
    Nieuwenhuijsen, Mark J.
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2013, 121 (11-12) : 1365 - 1371
  • [4] Spatiotemporal variability analysis of air pollution data from IoT based participatory sensing
    Middya, Asif Iqbal
    Roy, Sarbani
    Das, Rituparna
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (6) : 6719 - 6734
  • [5] Spatiotemporal variability analysis of air pollution data from IoT based participatory sensing
    Asif Iqbal Middya
    Sarbani Roy
    Rituparna Das
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 6719 - 6734
  • [6] Analysis of Air Pollution Impact Factors in China: A MIMIC Modeling Approach
    Gao, Jing
    Zhang, Lei
    [J]. FRONTIERS OF ECONOMICS IN CHINA, 2015, 10 (02) : 224 - 251
  • [7] Spatiotemporal retrieval and feature analysis of air pollution episodes
    Yin, Peng-Yeng
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 16824 - 16845
  • [8] Neurocomputing techniques to dynamically forecast spatiotemporal air pollution data
    Papaleonidas, Antonios
    Iliadis, Lazaros
    [J]. EVOLVING SYSTEMS, 2013, 4 (04) : 221 - 233
  • [9] Deep learning spatiotemporal air pollution data in China using data fusion
    Zhou, Xiaolu
    Tong, Weitian
    Li, Lixin
    [J]. EARTH SCIENCE INFORMATICS, 2020, 13 (03) : 859 - 868
  • [10] Deep learning spatiotemporal air pollution data in China using data fusion
    Xiaolu Zhou
    Weitian Tong
    Lixin Li
    [J]. Earth Science Informatics, 2020, 13 : 859 - 868