HYPERSPECTRAL IMAGE CHANGE DETECTION BASED ON INTRINSIC IMAGE DECOMPOSITION FEATURE EXTRACTION

被引:1
|
作者
Du, Kecheng [1 ]
Liu, Sicong [1 ]
机构
[1] Tongji Univ, Coll Surveying & Geoinformat, Shanghai, Peoples R China
关键词
Hyperspectral image; change detection; intrinsic image decomposition; multiple changes;
D O I
10.1117/12.2603753
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral images (HSIs) provides abundant spectral information through hundreds of bands with continuous spectral information that can be used in land cover fine change detection (CD). HSIs make it possible for hyperspectral CD performance with higher discrimination on changes but provides a challenge to the conventional CD techniques due to its high dimensionality and dense spectral representation. In this paper, we implemented intrinsic image decomposition (IID) model to decompose the hyperspectral temporal difference image into two parts: real change and pseudo change information. In particular, the spectral reflecting component is selected as a kind of pure spectral feature used to enhance the CD performance in multitemporal HSIs. Experimental results illustrate the effectiveness of IID features extraction in addressing a supervised CD task.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Intrinsic Image Decomposition for Feature Extraction of Hyperspectral Images
    Kang, Xudong
    Li, Shutao
    Fang, Leyuan
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04): : 2241 - 2253
  • [2] HyperDID: Hyperspectral Intrinsic Image Decomposition With Deep Feature Embedding
    Gong, Zhiqiang
    Zhou, Xian
    Yao, Wen
    Zheng, Xiaohu
    Zhong, Ping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [3] Multiscale Feature Extraction Based on Convolutional Sparse Decomposition for Hyperspectral Image Classification
    Zhong, Chongxiao
    Zhang, Junping
    Zhang, Ye
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4960 - 4972
  • [4] Hyperspectral intrinsic image decomposition based on local sparseness
    Ren Zhiwei
    Wu Lingda
    [J]. FIFTH SYMPOSIUM ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATION, 2019, 11023
  • [5] Feature Extraction of Hyperspectral Scattering Image for Apple Mealiness Based on Singular Value Decomposition
    Min, Huang
    Qi-bing, Zhu
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31 (03) : 767 - 770
  • [6] Feature Extraction for Hyperspectral Image Classification
    Uddin, M. P.
    Mamun, M. A.
    Hossain, M. A.
    [J]. 2017 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2017, : 379 - 382
  • [7] Superpixel-Based Intrinsic Image Decomposition of Hyperspectral Images
    Jin, Xudong
    Gu, Yanfeng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08): : 4285 - 4295
  • [8] Hyperspectral Intrinsic Image Decomposition Based on Automatic Subspace Partitioning
    Ren Zhiwei
    Wu Lingda
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (10)
  • [9] SPECTRAL FEATURE LEARNING FOR ANOMALY CHANGE DETECTION IN HYPERSPECTRAL IMAGE
    Xie, Wen
    Ren, Wen
    Wu, Qinzhe
    Sun, Hongyue
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7419 - 7422
  • [10] Intrinsic Hyperspectral Image Decomposition With DSM Cues
    Jin, Xudong
    Gu, Yanfeng
    Xie, Wen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60