Contact Angle and Condensation of a CO2 Droplet on a Solid Surface

被引:13
|
作者
Wu, Jianyang [1 ,2 ,3 ]
Ervik, Asmund [4 ]
Snustad, Ingrid [1 ]
Xiao, Senbo [1 ]
Brunsvold, Amy [4 ]
He, Jianyang [1 ]
Zhang, Zhiliang [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, NTNU Nanomech Lab, N-7491 Trondheim, Norway
[2] Xiamen Univ, Jiujiang Res Inst, Res Inst Biomimet & Soft Matter, Dept Phys, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Soft Funct Mat Res, Xiamen 361005, Peoples R China
[4] SINTEF Energy Res, POB 4761 Sluppen, N-7465 Trondheim, Norway
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2019年 / 123卷 / 01期
基金
中国国家自然科学基金;
关键词
MOLECULAR-DYNAMICS SIMULATION; EQUATION-OF-STATE; CARBON-DIOXIDE; VAPOR CONDENSATION; SUPERCRITICAL CO2; FOG-WATER; CAPTURE; WETTABILITY; CHALLENGES; MINERALIZATION;
D O I
10.1021/acs.jpcc.8b08927
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anthropogenic release of carbon dioxide (CO2) is a major contribution to manmade increase in global warming. Carbon capture and storage (CCS) is a necessary technology for lowering CO2 emissions to an acceptable level that limits global warming to below 2 degrees C. Liquefaction of CO2 is a key process both in capture technologies and in conditioning before ship transport. The efficiency of this process can be remarkably enhanced by promoting dropwise CO2 condensation on cooling surfaces, yet this remains largely unexplored. Here, using molecular dynamics (MD) simulations, we report for the first time the contact angle and condensation behavior of CO2 droplets on a smooth solid surface. The contact angle of the condensed CO2 droplet is greatly dependent on the CO2-solid characteristic interaction energy, but this does not hold true for the sum of condensed molecules. In contrast, the sum of condensed molecules for the filmwise condensation regime increases monotonically at first, but then remains constant as the CO2-solid interaction energy approaches a critical value. It is also revealed that droplet condensation on a cooling surface shows three distinct stages that are primarily characterized by heterogeneous cluster nucleation, diffusion-coalescence, and Ostwald ripening-coalescence mechanisms. As the area of the solid surface is increased by diffusion-induced coalescence of clusters at the first stage, cluster nucleation proceeds but ceases in the last stage at which the sum of condensed molecules is not accumulated. Analysis of the Ostwald ripening kinetics of a CO2 droplet reveals a constant growth rate of around 11 CO2 molecules/ns of the droplet.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 50 条
  • [1] Effect of condensation on surface contact angle
    Papakonstantinou, C. A.
    Chen, H.
    Bertola, V
    Amirfazli, A.
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 632
  • [2] Droplet impingement on a solid surface: Parametrization and asymmetry of dynamic contact angle model
    Sinha, Utkarsh
    Mynam, Mahesh
    Nadimpalli, Nagaravi Kumar Varma
    Runkana, Venkataramana
    [J]. PHYSICS OF FLUIDS, 2023, 35 (06)
  • [3] Liquid droplet in contact with a solid surface
    Maruyama, S
    Kurashige, T
    Matsumoto, S
    Yamaguchi, Y
    Kimura, T
    [J]. MICROSCALE THERMOPHYSICAL ENGINEERING, 1998, 2 (01): : 49 - 62
  • [4] Surface Condensation of CO2 onto Kaolinite
    Schaef, H. T.
    Glezakou, V. -A.
    Owen, A. T.
    Ramprasad, S.
    Martin, P. F.
    McGrail, B. P.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2014, 1 (02): : 142 - 145
  • [5] Kinetics of the formation of CO2 hydrate on the surface of liquid CO2 droplet in water
    Shindo, Y
    Sakaki, K
    Fujioka, Y
    Komiyama, H
    [J]. ENERGY CONVERSION AND MANAGEMENT, 1996, 37 (04) : 485 - 489
  • [6] Analysis of droplet condensation process on solid cold surface
    Zhang Z.
    Zhao E.
    Yan L.
    Yang W.
    Yuan H.
    Zhang Q.
    Tian J.
    [J]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (10): : 5441 - 5450
  • [7] Effects of Surface Roughness on Contact Angle of Nanofluid Droplet
    Kim, Yeung Chan
    [J]. TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2013, 37 (06) : 559 - 566
  • [8] Effects of Hierarchical Surface Roughness on Droplet Contact Angle
    Bell, Michael S.
    Shahraz, Azar
    Fichthorn, Kristen A.
    Borhan, Ali
    [J]. LANGMUIR, 2015, 31 (24) : 6752 - 6762
  • [9] Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low weber and Reynolds numbers
    Son, Yangsoo
    Kim, Chongyoup
    Yang, Doo Ho
    Alm, Dong June
    [J]. LANGMUIR, 2008, 24 (06) : 2900 - 2907
  • [10] Effect of liguid-solid contact angle on droplet evaporation
    Chandra, S
    diMarzo, M
    Qiao, YM
    Tartarini, P
    [J]. FIRE SAFETY JOURNAL, 1996, 27 (02) : 141 - 158