Dynamical control of quantum heat engines using exceptional points

被引:48
|
作者
Zhang, J-W [1 ,2 ]
Zhang, J-Q [1 ]
Ding, G-Y [1 ,3 ]
Li, J-C [1 ,3 ]
Bu, J-T [1 ,3 ]
Wang, B. [1 ,3 ]
Yan, L-L [4 ]
Su, S-L [4 ]
Chen, L. [1 ,2 ]
Nori, F. [5 ,6 ]
Ozdemir, S. K. [7 ,8 ]
Zhou, F. [1 ,2 ]
Jing, H. [9 ,10 ,11 ]
Feng, M. [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan, Peoples R China
[2] Guangzhou Inst Ind Technol, Res Ctr Quantum Precis Measurement, Guangzhou 511458, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China
[4] Zhengzhou Univ, Sch Phys, Zhengzhou 450001, Peoples R China
[5] RIKEN, Cluster Pioneering Res, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan
[6] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
[7] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[8] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[9] Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Minist Educ, Dept Phys, Changsha 410081, Peoples R China
[10] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
[11] Zhengzhou Univ Light Ind, Synerget Innovat Acad Quantum Sci & Technol, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金; 日本科学技术振兴机构; 日本学术振兴会;
关键词
SINGLE; WORK;
D O I
10.1038/s41467-022-33667-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A quantum thermal machine is an open quantum system coupled to hot and cold thermal baths. Thus, its dynamics can be well understood using the concepts and tools from non-Hermitian quantum systems. A hallmark of non-Hermiticity is the existence of exceptional points where the eigenvalues of a non-Hermitian Hamiltonian or a Liouvillian superoperator and their associated eigenvectors coalesce. Here, we report the experimental realization of a single-ion heat engine and demonstrate the effect of Liouvillian exceptional points on the dynamics and the performance of a quantum heat engine. Our experiments have revealed that operating the engine in the exact- and broken-phases, separated by a Liouvillian exceptional point, respectively during the isochoric heating and cooling strokes of an Otto cycle produces more work and output power and achieves higher efficiency than executing the Otto cycle completely in the exact phase where the system has an oscillatory dynamics and higher coherence. This result opens interesting possibilities for the control of quantum heat engines and will be of interest to other research areas that are concerned with the role of coherence and exceptional points in quantum processes and in work extraction by thermal machines. Investigations of quantum thermal machines and Liouvillian exceptional points have rarely crossed each other. Here, the authors realize experimentally a quantum Otto engine using a single trapped ion, and show that crossing a Liouvillian exceptional point during the cycle increases the engine performance.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Dynamical control of quantum heat engines using exceptional points
    J.-W. Zhang
    J.-Q. Zhang
    G.-Y. Ding
    J.-C. Li
    J.-T. Bu
    B. Wang
    L.-L. Yan
    S.-L. Su
    L. Chen
    F. Nori
    Ş. K. Özdemir
    F. Zhou
    H. Jing
    M. Feng
    Nature Communications, 13
  • [2] Quantum heat engines: Limit cycles and exceptional points
    Insinga, Andrea
    Andresen, Bjarne
    Salamon, Peter
    Kosloff, Ronnie
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [3] Quantum dynamical framework for Brownian heat engines
    Agarwal, G. S.
    Chaturvedi, S.
    PHYSICAL REVIEW E, 2013, 88 (01):
  • [4] Exceptional Points and Dynamical Phase Transitions
    Rotter, I.
    ACTA POLYTECHNICA, 2010, 50 (05) : 73 - 76
  • [5] Quantum interference and exceptional points
    Longhi, S.
    OPTICS LETTERS, 2018, 43 (21) : 5371 - 5374
  • [6] Holographic heat engines as quantum heat engines
    Johnson, Clifford, V
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (03)
  • [7] Clustering of exceptional points and dynamical phase transitions
    Eleuch, Hichem
    Rotter, Ingrid
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [8] Exceptional points in coupled dissipative dynamical systems
    Ryu, Jung-Wan
    Son, Woo-Sik
    Hwang, Dong-Uk
    Lee, Soo-Young
    Kim, Sang Wook
    PHYSICAL REVIEW E, 2015, 91 (05):
  • [9] Exceptional points in quantum and classical dynamics
    Smilga, A. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (09)
  • [10] QUANTUM CHAOS, DEGENERACIES, AND EXCEPTIONAL POINTS
    HEISS, WD
    RADU, S
    PHYSICAL REVIEW E, 1995, 52 (05) : 4762 - 4767