Is rectal filling optimal for MRI-based radiomics in preoperative T staging of rectal cancer?

被引:4
|
作者
Yuan, Yuan [1 ]
Lu, Haidi [1 ]
Ma, Xiaolu [1 ]
Chen, Fangying [1 ]
Zhang, Shaoting [1 ]
Xia, Yuwei [2 ]
Wang, Minjie [1 ]
Shao, Chengwei [1 ]
Lu, Jianping [1 ]
Shen, Fu [1 ]
机构
[1] Changhai Hosp, Dept Radiol, 168 Changhai Rd, Shanghai 200433, Peoples R China
[2] Huiying Med Technol Co Ltd, B2,Dongsheng Sci & Technol Pk, Beijing, Peoples R China
关键词
Rectal cancer; Radiomics; Magnetic resonance imaging; Machine learning; PREDICTION; GUIDELINES; DISTANCE; BRIDGE;
D O I
10.1007/s00261-022-03477-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To determine whether rectal filling with ultrasound gel is clinically more beneficial in preoperative T staging of patients with rectal cancer (RC) using radiomics model based on magnetic resonance imaging (MRI). Methods A total of 94 RC patients were assigned to cohort 1 (leave-one-out cross-validation [LOO-CV] set) and 230 RC patients were assigned to cohort 2 (test set). Patients were grouped according to different pathological T stages. The radiomics features were extracted through high-resolution T2-weighted imaging for all volume of interests in the two cohorts. Optimal features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm. Model 1 (without rectal filling) and model 2 (with rectal filling) were constructed. LOO-CV was adopted for radiomics model building in cohort 1. Thereafter, the cohort 2 was used to test and verify the effectiveness of the two models. Results Totally, 204 patients were enrolled, including 60 cases in cohort 1 and 144 cases in cohort 2. Finally, seven optimal features with LASSO were selected to build model 1 and nine optimal features were used for model 2. The ROC curves showed an AUC of 0.806 and 0.946 for model 1 and model 2 in cohort 1, respectively, and an AUC of 0.783 and 0.920 for model 1 and model 2 in cohort 2, respectively (p = 0.021). Conclusion The radiomics model with rectal filling showed an advantage for differentiating T1 + 2 from T3 and had less inaccurate categories in the test cohort, suggesting that this model may be useful for T-stage evaluation.
引用
收藏
页码:1741 / 1749
页数:9
相关论文
共 50 条
  • [1] Is rectal filling optimal for MRI-based radiomics in preoperative T staging of rectal cancer?
    Yuan Yuan
    Haidi Lu
    Xiaolu Ma
    Fangying Chen
    Shaoting Zhang
    Yuwei Xia
    Minjie Wang
    Chengwei Shao
    Jianping Lu
    Fu Shen
    Abdominal Radiology, 2022, 47 : 1741 - 1749
  • [2] MRI-based radiomics for preoperative prediction of recurrence and metastasis in rectal cancer
    Xiuzhen Yao
    Xiandi Zhu
    Shuitang Deng
    Sizheng Zhu
    Guoqun Mao
    Jinwen Hu
    Wenjie Xu
    Sikai Wu
    Weiqun Ao
    Abdominal Radiology, 2024, 49 : 1306 - 1319
  • [3] MRI-based radiomics for preoperative prediction of recurrence and metastasis in rectal cancer
    Yao, Xiuzhen
    Zhu, Xiandi
    Deng, Shuitang
    Zhu, Sizheng
    Mao, Guoqun
    Hu, Jinwen
    Xu, Wenjie
    Wu, Sikai
    Ao, Weiqun
    ABDOMINAL RADIOLOGY, 2024, 49 (04) : 1306 - 1319
  • [4] Assessment of MRI-Based Radiomics in Preoperative T Staging of Rectal Cancer: Comparison between Minimum and Maximum Delineation Methods
    Lu, Haidi
    Yuan, Yuan
    Zhou, Zhen
    Ma, Xiaolu
    Shen, Fu
    Xia, Yuwei
    Lu, Jianping
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [5] MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features
    Xiaolu Ma
    Fu Shen
    Yan Jia
    Yuwei Xia
    Qihua Li
    Jianping Lu
    BMC Medical Imaging, 19
  • [6] MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features
    Ma, Xiaolu
    Shen, Fu
    Jia, Yan
    Xia, Yuwei
    Li, Qihua
    Lu, Jianping
    BMC MEDICAL IMAGING, 2019, 19 (01)
  • [7] A radiomics-based nomogram for preoperative T staging prediction of rectal cancer
    Xue Lin
    Sheng Zhao
    Huijie Jiang
    Fucang Jia
    Guisheng Wang
    Baochun He
    Hao Jiang
    Xiao Ma
    Jinping Li
    Zhongxing Shi
    Abdominal Radiology, 2021, 46 : 4525 - 4535
  • [8] A radiomics-based nomogram for preoperative T staging prediction of rectal cancer
    Lin, Xue
    Zhao, Sheng
    Jiang, Huijie
    Jia, Fucang
    Wang, Guisheng
    He, Baochun
    Jiang, Hao
    Ma, Xiao
    Li, Jinping
    Shi, Zhongxing
    ABDOMINAL RADIOLOGY, 2021, 46 (10) : 4525 - 4535
  • [9] Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer
    Shu, Zhenyu
    Mao, Dewang
    Song, Qiaowei
    Xu, Yuyun
    Pang, Peipei
    Zhang, Yang
    EUROPEAN RADIOLOGY, 2022, 32 (02) : 1002 - 1013
  • [10] Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer
    Zhenyu Shu
    Dewang Mao
    Qiaowei Song
    Yuyun Xu
    Peipei Pang
    Yang Zhang
    European Radiology, 2022, 32 : 1002 - 1013