Spectral-Element Spectral-Integral (SESI) Method for the 1-D Bloch (Floquet) Periodic Problems With Scatterers Embedded in Multiple Regions of 2-D Layered Media

被引:8
|
作者
Wang, Jianwen [1 ,2 ]
Li, Jiawen [1 ,2 ]
Liu, Jie [1 ,3 ]
Liu, Qing Huo [4 ]
机构
[1] Xiamen Univ, Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Electromagnet Wave Sci & Dete, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Sch Informat, Postdoctoral Mobile Stn Informat & Commun Engn, Xiamen 361005, Peoples R China
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Bloch (Floquet) periodic boundary condition (BPBC); 1-D periodic scatterers; spectral-element spectralintegral (SESI) method; 2-D periodic layered medium Green's function (PLMGF); HYBRID FINITE-ELEMENT; GREENS-FUNCTION; FORMULATION; EQUATION;
D O I
10.1109/TMTT.2021.3132350
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The hybrid spectral-element spectral-integral (SESI) method is developed for the electromagnetic (EM) scattering in 1-D Bloch (Floquet) periodic problems with scatterers embedded in multiple regions of 2-D layered media. The periodic layered medium Green's function (PLMGF) is derived for the SESI method so that it can simulate EM scattering by horizontally periodic scatterers placed in an arbitrary number of layers. The SESI method is a combination of the spectral-element method (SEM) and the spectral-integral method (SIM). The SEM is applied only in regions with scatterers and has the merits of exponential convergence at a low spatial sampling density, while the SIM serves as an exact radiation boundary condition for the bottom and top boundaries of each SEM region. Therefore, there is no need to discretize the regions with pure layered media; furthermore, the inverses of these SIM matrices are given exactly and explicitly with only O(N log N) CPU time. Three numerical experiments are performed to show the accuracy and efficiency of the SESI method.
引用
收藏
页码:1006 / 1015
页数:10
相关论文
共 11 条
  • [1] Spectral-Element Spectral-Integral (SESI) Method for Doubly Periodic Problems With 3-D Scatterers Embedded in Multiple Regions of Layered Media
    Wang, Jianwen
    Wang, Shi Jie
    Li, Jiawen
    Liu, Jie
    Xiao, Li-Ye
    Liu, Qing Huo
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (03) : 977 - 987
  • [2] Calderon Preconditioned Spectral-Element Spectral-Integral Method for Doubly Periodic Structures in Layered Media
    Mao, Yiqian
    Niu, Jun
    Zhan, Qiwei
    Zhang, Runren
    Huang, Wei-Feng
    Liu, Qing Huo
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (07) : 5524 - 5533
  • [3] Spectral-Element Spectral-Integral Method for EM Scattering by Doubly Periodic Objects in Fully Anisotropic Layered Media
    Wang, Jianwen
    Liu, Jie
    Zhuang, Mingwei
    Liu, Qing Huo
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (10) : 4218 - 4226
  • [4] Mixed Spectral-Element Methods for 3-D Maxwell's Eigenvalue Problems With Bloch Periodic and Open Resonators
    Wang, Shi Jie
    Liu, Jie
    Zhuang, Ming Wei
    Chen, Ke
    Liu, Qing Huo
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (03) : 1547 - 1558
  • [5] A Spectral-Element Method for the Analysis of 2-D Waveguide Devices With Sharp Edges and Irregular Shapes
    Peverini, Oscar Antonio
    Addamo, Giuseppe
    Virone, Giuseppe
    Tascone, Riccardo
    Orta, Renato
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (07) : 1685 - 1695
  • [6] A 2-D spectral-element method for computing spherical-earth seismograms - II. Waves in solid-fluid media
    Nissen-Meyer, Tarje
    Fournier, Alexandre
    Dahlen, F. A.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 174 (03) : 873 - 888
  • [7] The spectral element method for elastic wave equations - Application to 2-D and 3-D seismic problems
    Dept. de Sismologie , Inst. de Physique du Globe de Paris, 4 Place Jussieu, 75252 - Paris Cedex 05, France
    不详
    不详
    Int. J. Numer. Methods Eng., 9 (1139-1164):
  • [8] The spectral element method for elastic wave equations -: Application to 2-D and 3-D seismic problems
    Komatitsch, D
    Vilotte, JP
    Vai, R
    Castillo-Covarrubias, JM
    Sánchez-Sesma, FJ
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (09) : 1139 - 1164
  • [9] Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles
    Komatitsch, D
    Martin, R
    Tromp, J
    Taylor, MA
    Wingate, BA
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2001, 9 (02) : 703 - 718
  • [10] Revisited implementation of the spectral kummer-poisson's method for the efficient computation of 2-D periodic Green's functions in homogeneous media
    Boix, R. R.
    Fructos, A. L.
    Mesa, F.
    Medina, F.
    PIERS 2008 HANGZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, VOLS I AND II, PROCEEDINGS, 2008, : 848 - +