Elliptic and parabolic regularity for second-order divergence operators with mixed boundary conditions

被引:24
|
作者
Haller-Dintelmann, Robert [1 ]
Jonsson, Alf [2 ]
Knees, Dorothee [3 ]
Rehberg, Joachim [4 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64298 Darmstadt, Germany
[2] Umea Univ, SE-90187 Umea, Sweden
[3] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34109 Kassel, Germany
[4] Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
关键词
mixed boundary conditions; interpolation; elliptic regularity for equations and systems; analytic semigroups; SOBOLEV; SYSTEMS; DOMAINS;
D O I
10.1002/mma.3484
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study second-order equations and systems on non-Lipschitz domains including mixed boundary conditions. The key result is interpolation for suitable function spaces. From this, elliptic and parabolic regularity results are deduced by means of Sne. iberg's isomorphism theorem. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:5007 / 5026
页数:20
相关论文
共 50 条
  • [1] Maximal parabolic regularity for divergence operators including mixed boundary conditions
    Haller-Dintelmann, Robert
    Rehberg, Joachim
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (05) : 1354 - 1396
  • [2] On the numerical range of second-order elliptic operators with mixed boundary conditions in Lp
    Chill, Ralph
    Meinlschmidt, Hannes
    Rehberg, Joachim
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3267 - 3288
  • [3] The square root problem for second-order, divergence form operators with mixed boundary conditions on Lp
    Pascal Auscher
    Nadine Badr
    Robert Haller-Dintelmann
    Joachim Rehberg
    [J]. Journal of Evolution Equations, 2015, 15 : 165 - 208
  • [4] On second-order periodic elliptic operators in divergence form
    Ter Elst A.F.M.
    Robinson D.W.
    Sikora A.
    [J]. Mathematische Zeitschrift, 2001, 238 (3) : 569 - 637
  • [5] On second-order periodic elliptic operators in divergence form
    ter Elst, AFM
    Robinson, DW
    Sikora, A
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (03) : 569 - 637
  • [6] The square root problem for second-order, divergence form operators with mixed boundary conditions on L p
    Auscher, Pascal
    Badr, Nadine
    Haller-Dintelmann, Robert
    Rehberg, Joachim
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2015, 15 (01) : 165 - 208
  • [7] Maximal regularity for elliptic operators with second-order discontinuous coefficients
    G. Metafune
    L. Negro
    C. Spina
    [J]. Journal of Evolution Equations, 2021, 21 : 3613 - 3637
  • [8] Maximal regularity for elliptic operators with second-order discontinuous coefficients
    Metafune, G.
    Negro, L.
    Spina, C.
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3613 - 3637
  • [9] Generalized finite element method for second-order elliptic operators with Dirichlet boundary conditions
    Babuska, Ivo
    Nistor, Victor
    Tarfulea, Nicolae
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (01) : 175 - 183
  • [10] OPTIMAL SOBOLEV REGULARITY FOR LINEAR SECOND-ORDER DIVERGENCE ELLIPTIC OPERATORS OCCURRING IN REAL-WORLD PROBLEMS
    Disser, Karoline
    Kaiser, Hans-Christoph
    Rehberg, Joachim
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (03) : 1719 - 1746