Attention Autoencoder for Generative Latent Representational Learning in Anomaly Detection

被引:12
|
作者
Oluwasanmi, Ariyo [1 ]
Aftab, Muhammad Umar [2 ]
Baagyere, Edward [1 ]
Qin, Zhiguang [1 ]
Ahmad, Muhammad [2 ]
Mazzara, Manuel [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
[2] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Chiniot Faisalabad Campus, Chiniot 35400, Pakistan
[3] Innopolis Univ, Inst Software Dev & Engn, Innopolis 420500, Russia
基金
中国国家自然科学基金;
关键词
anomaly detection; autoencoder; variational autoencoder (VAE); long short-term memory (LSTM); attention module; FAULT-DIAGNOSIS; NETWORKS;
D O I
10.3390/s22010123
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Today, accurate and automated abnormality diagnosis and identification have become of paramount importance as they are involved in many critical and life-saving scenarios. To accomplish such frontiers, we propose three artificial intelligence models through the application of deep learning algorithms to analyze and detect anomalies in human heartbeat signals. The three proposed models include an attention autoencoder that maps input data to a lower-dimensional latent representation with maximum feature retention, and a reconstruction decoder with minimum remodeling loss. The autoencoder has an embedded attention module at the bottleneck to learn the salient activations of the encoded distribution. Additionally, a variational autoencoder (VAE) and a long short-term memory (LSTM) network is designed to learn the Gaussian distribution of the generative reconstruction and time-series sequential data analysis. The three proposed models displayed outstanding ability to detect anomalies on the evaluated five thousand electrocardiogram (ECG5000) signals with 99% accuracy and 99.3% precision score in detecting healthy heartbeats from patients with severe congestive heart failure.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fault-Attention Generative Probabilistic Adversarial Autoencoder for Machine Anomaly Detection
    Wu, Jingyao
    Zhao, Zhibin
    Sun, Chuang
    Yan, Ruqiang
    Chen, Xuefeng
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (12) : 7479 - 7488
  • [2] Spatial Temporal Balanced Generative Adversarial AutoEncoder for Anomaly Detection
    Lei, Zheng
    Deng, Fang
    Yang, Xudong
    [J]. PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019), 2019, : 1 - 7
  • [3] BinPlay: A Binary Latent Autoencoder for Generative Replay Continual Learning
    Deja, Kamil
    Wawrzynski, Pawel
    Marczak, Daniel
    Masarczyk, Wojciech
    Trzcinski, Tomasz
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] Attention boosted autoencoder for building energy anomaly detection
    Pydi, Durga Prasad
    Advaith, S.
    [J]. ENERGY AND AI, 2023, 14
  • [5] Temporal autoencoder architectures with attention for ECG anomaly detection
    Varghese A.
    Midhun M.S.
    Kurian J.
    [J]. International Journal of Business Intelligence and Data Mining, 2024, 24 (02) : 146 - 159
  • [6] MFGAN: Multimodal Fusion for Industrial Anomaly Detection Using Attention-Based Autoencoder and Generative Adversarial Network
    Qu, Xinji
    Liu, Zhuo
    Wu, Chase Q.
    Hou, Aiqin
    Yin, Xiaoyan
    Chen, Zhulian
    [J]. SENSORS, 2024, 24 (02)
  • [7] Convolutional autoencoder based on latent subspace projection for anomaly detection
    Yu, Qien
    Li, Chen
    Zhu, Ye
    Kurita, Takio
    [J]. METHODS, 2023, 214 : 48 - 59
  • [8] CONTINUAL LEARNING FOR ANOMALY DETECTION WITH VARIATIONAL AUTOENCODER
    Wiewel, Felix
    Yang, Bin
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3837 - 3841
  • [9] Attention-based residual autoencoder for video anomaly detection
    Viet-Tuan Le
    Yong-Guk Kim
    [J]. Applied Intelligence, 2023, 53 : 3240 - 3254
  • [10] Attention-based residual autoencoder for video anomaly detection
    Le, Viet-Tuan
    Kim, Yong-Guk
    [J]. APPLIED INTELLIGENCE, 2023, 53 (03) : 3240 - 3254