Robust diagnostics for the heteroscedastic regression model

被引:12
|
作者
Cheng, Tsung-Chi [1 ]
机构
[1] Natl Chengchi Univ, Dept Stat, Taipei 11605, Taiwan
关键词
Forward search algorithm; Heteroscedasticity; Maximum trimmed likelihood estimator; Residual maximum likelihood estimator; Outlier; Robust diagnostics; TRIMMED LIKELIHOOD ESTIMATORS; RESIDUAL MAXIMUM-LIKELIHOOD; VARIANCE HETEROGENEITY; BREAKDOWN POINTS; SQUARES; PARAMETERS; ALGORITHM; OUTLIERS; TESTS;
D O I
10.1016/j.csda.2010.11.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The assumption of equal variance in the normal regression model is not always appropriate. Cook and Weisberg (1983) provide a score test to detect heteroscedasticity, while Patterson and Thompson (1971) propose the residual maximum likelihood (REML) estimation to estimate variance components in the context of an unbalanced incomplete-block design. REML is often preferred to the maximum likelihood estimation as a method of estimating covariance parameters in a linear model. However, outliers may have some effect on the estimate of the variance function. This paper incorporates the maximum trimming likelihood estimation (Hadi and Luceno, 1997; Vandev and Neykov, 1998) in REML to obtain a robust estimation of modelling variance heterogeneity. Both the forward search algorithm of Atkinson (1994) and the fast algorithm of Neykov et al. (2007) are employed to find the resulting estimator. Simulation and real data examples are used to illustrate the performance of the proposed approach. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1845 / 1866
页数:22
相关论文
共 50 条
  • [1] On a Robust Estimator in Heteroscedastic Regression Model in the Presence of Outliers
    Midi, Habshah
    Rana, Sohel
    Imon, A. H. M. R.
    [J]. WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL I, 2013, : 280 - +
  • [2] ESTIMATION IN A HETEROSCEDASTIC REGRESSION MODEL
    RUTEMILLER, HC
    BOWERS, DA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1968, 63 (322) : 552 - 557
  • [3] Algorithms for robust nonlinear regression with heteroscedastic errors
    Tothfalusi, L
    Endrenyi, L
    [J]. INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1996, 42 (03): : 181 - 190
  • [4] TWO-STEP ROBUST ESTIMATOR IN HETEROSCEDASTIC REGRESSION MODEL IN THE PRESENCE OF OUTLIERS
    Midi, Habshah
    Rana, Sohel
    Imon, A. H. M. Rahmatullah
    [J]. ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2014, 48 (03): : 255 - 272
  • [5] DIAGNOSTICS FOR ROBUST REGRESSION: LINEAR VERSUS NONLINEAR MODEL
    Kalina, Jan
    [J]. 10TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2016, : 781 - 790
  • [6] Minimax robust designs for regression models with heteroscedastic errors
    Kai Yzenbrandt
    Julie Zhou
    [J]. Metrika, 2022, 85 : 203 - 222
  • [7] Robust estimation and variable selection in heteroscedastic linear regression
    Gijbels, I.
    Vrinssen, I.
    [J]. STATISTICS, 2019, 53 (03) : 489 - 532
  • [8] Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution
    Guney, Yesim
    Tuac, Yetkin
    Ozdemir, Senay
    Arslan, Olcay
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (02) : 805 - 827
  • [9] Minimax robust designs for regression models with heteroscedastic errors
    Yzenbrandt, Kai
    Zhou, Julie
    [J]. METRIKA, 2022, 85 (02) : 203 - 222
  • [10] Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution
    Yeşim Güney
    Yetkin Tuaç
    Şenay Özdemir
    Olcay Arslan
    [J]. Computational Statistics, 2021, 36 : 805 - 827