A new elliptic mixed boundary value problem with (p, q)-Laplacian and Clarke subdifferential: Existence, comparison and convergence results

被引:4
|
作者
Zeng, Shengda [1 ,2 ]
Migorski, Stanislaw [3 ,4 ]
Tarzia, Domingo A. [5 ,6 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ, Key Lab Complex Syst Optimizat & Big Data Proc, Yulin 537000, Peoples R China
[2] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[4] Jagiellonian Univ Krakow, Chair Optimizat & Control, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[5] Univ Austral, Dept Matemat, FCE, Paraguay 1950,S2000FZF, Rosario, Argentina
[6] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
基金
欧盟地平线“2020”;
关键词
Mixed boundary value problem; (p; q)-Laplacian; Clarke's generalized gradient; comparison; asymptotic behavior; HEMIVARIATIONAL INEQUALITY;
D O I
10.1142/S0219530521500287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to investigate a new class of elliptic mixed boundary value problems involving a nonlinear and nonhomogeneous partial differential operator (p, q)-Laplacian, and a multivalued term represented by Clarke's generalized gradient. First, we apply a surjectivity result for multivalued pseudomonotone operators to examine the existence of weak solutions under mild hypotheses. Then, a comparison theorem is delivered, and a convergence result, which reveals the asymptotic behavior of solution when the parameter (heat transfer coefficient) tends to infinity, is obtained. Finally, we establish a continuous dependence result of solution to the boundary value problem on the data.
引用
收藏
页码:839 / 858
页数:20
相关论文
共 50 条
  • [1] A class of elliptic mixed boundary value problems with (p, q)-Laplacian: existence, comparison and optimal control
    Shengda Zeng
    Stanisław Migórski
    Domingo A. Tarzia
    Lang Zou
    Van Thien Nguyen
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [2] A class of elliptic mixed boundary value problems with (p, q)-Laplacian: existence, comparison and optimal control
    Zeng, Shengda
    Migorski, Stanislaw
    Tarzia, Domingo A.
    Zou, Lang
    Van Thien Nguyen
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [3] Existence of Solutions for a Second Order Boundary Value Problem with the Clarke Subdifferential
    Azzam-Laouir, Dalila
    Melit, Samira
    [J]. FILOMAT, 2017, 31 (09) : 2763 - 2771
  • [4] Criteria of Existence for a q Fractional p-Laplacian Boundary Value Problem
    Ragoub, Lakhdar
    Tchier, Fairouz
    Tawfiq, Ferdous
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2020, 6
  • [5] EXISTENCE AND MULTIPLICITY RESULTS FOR p-q-LAPLACIAN BOUNDARY VALUE PROBLEMS
    Acharya, Ananta
    Das, Ujjal
    Shivaji, Ratnasingham
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, : 293 - 300
  • [6] Nonexistence and Existence Results for a Fourth-Order p-Laplacian Discrete Mixed Boundary Value Problem
    Liu, Xia
    Zhang, Yuanbiao
    Shi, Haiping
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (02) : 419 - 432
  • [7] Nonexistence and Existence Results for a Fourth-Order p-Laplacian Discrete Mixed Boundary Value Problem
    Xia Liu
    Yuanbiao Zhang
    Haiping Shi
    [J]. Mediterranean Journal of Mathematics, 2015, 12 : 419 - 432
  • [8] Existence results for a mixed boundary value problem
    Hadjian, Armin
    Tersian, Stepan
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (78) : 1 - 15
  • [9] Existence results for a class of p-q Laplacian semipositone boundary value problems
    Das, Ujjal
    Muthunayake, Amila
    Shivaji, Ratnasingham
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (88) : 1 - 7
  • [10] Existence of positive solutions of elliptic mixed boundary value problem
    Li, Guofa
    [J]. BOUNDARY VALUE PROBLEMS, 2012,