Interpolation Hilbert Spaces Between Sobolev Spaces

被引:19
|
作者
Mikhailets, Vladimir A. [1 ,2 ]
Murach, Aleksandr A. [1 ,3 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
[2] Natl Tech Univ Ukraine, Kyiv Polytech Inst, Kiev, Ukraine
[3] Chernihiv Natl Pedag Univ, Chernihiv, Ukraine
关键词
Sobolev space; interpolation space; Hormander space; OR-varying function; interpolation with a function parameter; FUNCTION PARAMETER; BESOV-SPACES;
D O I
10.1007/s00025-014-0399-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explicitly describe all Hilbert function spaces that are interpolation spaces with respect to a given couple of Sobolev inner product spaces considered over R-n or a half-space in R-n or a bounded Euclidean domain with Lipschitz boundary. We prove that these interpolation spaces form a subclass of isotropic Hormander spaces. They are parametrized with a radial function parameter which is OR-varying at +infinity and satisfies some additional conditions. We give explicit examples of intermediate but not interpolation spaces.
引用
收藏
页码:135 / 152
页数:18
相关论文
共 50 条