Many-Objective Evolutionary Algorithm Based On Decomposition With Random And Adaptive Weights

被引:0
|
作者
Farias, Lucas R. C. [1 ]
Araujo, Aluizio F. R. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
关键词
PERFORMANCE; MOEA/D; OPTIMIZATION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Decomposition-based evolutionary algorithms that work with an appropriate set of weights might obtain a quality final solution set in spite of the use of uniformly distributed and fixed weights that has two important limitations: it may fail depending on the problem geometry; and the population size is not flexible when dealing with Many-objective Problems (MaOPs). Recently proposed, the MOEA/D with Uniformly Randomly Adaptive Weights (MOEA/D-URAW) deals with these limitations using uniformly randomly weights generation method and weight adaptation based on the population sparsity. This paper validates this new approach, the MOEA/D-URAW, with state-of-the-art evolutionary algorithms in MaOPs, i.e., WFG1-WFG9 and MOKP with 5, 10 and 15 objectives. The results suggest the effectiveness of this approach.
引用
收藏
页码:3746 / 3751
页数:6
相关论文
共 50 条
  • [1] Many-objective evolutionary algorithm based on adaptive weighted decomposition
    Jiang, Siyu
    He, Xiaoyu
    Zhou, Yuren
    APPLIED SOFT COMPUTING, 2019, 84
  • [2] An adaptive decomposition-based evolutionary algorithm for many-objective optimization
    Han, Dong
    Du, Wenli
    Du, Wei
    Jin, Yaochu
    Wu, Chunping
    INFORMATION SCIENCES, 2019, 491 : 204 - 222
  • [3] A decomposition-based many-objective evolutionary algorithm updating weights when required
    de Farias, Lucas R. C.
    Araujo, Aluizio F. R.
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 68
  • [4] An Evolutionary Many-Objective Optimisation Algorithm with Adaptive Region Decomposition
    Liu, Hai-Lin
    Chen, Lei
    Zhang, Qingfu
    Deb, Kalyanmoy
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4763 - 4769
  • [5] A many-objective evolutionary algorithm based on rotation and decomposition
    Zou, Juan
    Liu, Jing
    Yang, Shengxiang
    Zheng, Jinhua
    Swarm and Evolutionary Computation, 2021, 60
  • [6] Many-objective Evolutionary Algorithm Based on Decomposition and Coevolution
    Xie C.-W.
    Yu W.-W.
    Bi Y.-Z.
    Wang S.-W.
    Hu Y.-R.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (02): : 356 - 373
  • [7] A Many-Objective Evolutionary Algorithm Based on Indicator and Decomposition
    Xia, Yizhang
    Huang, Jianzun
    Li, Xijun
    Liu, Yuan
    Zheng, Jinhua
    Zou, Juan
    MATHEMATICS, 2023, 11 (02)
  • [8] An adaptive decomposition evolutionary algorithm based on environmental information for many-objective optimization
    Wei, Zhihui
    Yang, Jingming
    Hu, Ziyu
    Sun, Hao
    ISA TRANSACTIONS, 2021, 111 : 108 - 120
  • [9] A coordinated many-objective evolutionary algorithm using random adaptive parameters
    Di Wu
    Jiangjiang Zhang
    Shaojin Geng
    Xingjuan Cai
    Applied Intelligence, 2022, 52 : 7248 - 7270
  • [10] A coordinated many-objective evolutionary algorithm using random adaptive parameters
    Wu, Di
    Zhang, Jiangjiang
    Geng, Shaojin
    Cai, Xingjuan
    APPLIED INTELLIGENCE, 2022, 52 (07) : 7248 - 7270