SUM LIST EDGE COLORINGS OF GRAPHS

被引:0
|
作者
Kemnitz, Arnfried [1 ]
Marangio, Massimiliano [1 ]
Voigt, Margit [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Computat Math, Pockelsstr 14, D-38106 Braunschweig, Germany
[2] Univ Appl Sci, Fac Informat Technol & Math, Friedrich List Pl 1, D-01069 Dresden, Germany
关键词
sum list edge coloring; sum choice index; sum list coloring; sum choice number; choice function; line graph;
D O I
10.7151/dmgt.1884
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple graph and for every edge e is an element of E let L(e) be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with c(e) is an element of L(e) for all e is an element of E. A function f : E -> N is called an edge choice function of G and G is said to be f-edge choosable if G is L-edge colorable for every list assignment L with vertical bar L(e)vertical bar - f(e) for all e is an element of E. Set size(f) = Sigma(e is an element of E) f(e) and define the sum choice index chi(sc)' (G) as the minimum of size(f) over all edge choice functions f of G. There exists a greedy coloring of the edges of G which leads to the upper bound chi(sc)' (G) <= 1/2 Sigma(v is an element of V) d(v)(2). A graph is called sec-greedy if its sum choice index equals this upper bound. We present some general results on the sum choice index of graphs including a lower bound and we determine this index for several classes of graphs. Moreover, we present classes of sec-greedy graphs as well as all such graphs of order at most 5.
引用
收藏
页码:709 / 722
页数:14
相关论文
共 50 条
  • [1] GENERALIZED SUM LIST COLORINGS OF GRAPHS
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Voigt, Margit
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (03) : 689 - 703
  • [2] List edge colorings of outerplanar graphs
    Hackmann, A
    Kemnitz, A
    [J]. ARS COMBINATORIA, 2001, 60 : 181 - 185
  • [3] On list edge-colorings of subcubic graphs
    Juvan, M
    Mohar, B
    Skrekovski, R
    [J]. DISCRETE MATHEMATICS, 1998, 187 (1-3) : 137 - 149
  • [4] List Strong Edge-Colorings of Sparse Graphs
    Deng, Kecai
    Huang, Ningge
    Zhang, Haiyang
    Zhou, Xiangqian
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (06)
  • [5] List Strong Edge-Colorings of Sparse Graphs
    Kecai Deng
    Ningge Huang
    Haiyang Zhang
    Xiangqian Zhou
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [6] Neighbor sum distinguishing edge colorings of sparse graphs
    Hu, Xiaolan
    Chen, Yaojun
    Luo, Rong
    Miao, Zhengke
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 193 : 119 - 125
  • [7] List edge and list total colorings of planar graphs without short cycles
    Liu, Bin
    Hou, Jianfeng
    Liu, Guizhen
    [J]. INFORMATION PROCESSING LETTERS, 2008, 108 (06) : 347 - 351
  • [8] List edge-colorings of series-parallel graphs
    Fujino, T
    Zhou, X
    Nishizeki, T
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (05) : 1034 - 1045
  • [9] Kempe equivalent list edge-colorings of planar graphs
    Cranston, Daniel W.
    [J]. DISCRETE MATHEMATICS, 2023, 346 (11)
  • [10] Equitable Neighbor Sum Distinguishing Edge Colorings of Some Graphs
    Wang, Jihui
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 891 - 893