Resolvent of Large Random Graphs

被引:71
|
作者
Bordenave, Charles [1 ,2 ]
Lelarge, Marc [3 ]
机构
[1] Univ Toulouse, Inst Math, Toulouse, France
[2] CNRS, F-75700 Paris, France
[3] Ecole Normale Super, INRIA, Projet TREC, F-75231 Paris, France
关键词
random graphs; spectral measure; local convergence; Galton-Watson tree; EIGENVALUE DISTRIBUTION; MATRICES; SPECTRUM; STATES; LIMITS;
D O I
10.1002/rsa.20313
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We analyze the convergence of the spectrum of large random graphs to the spectrum of a limit infinite graph. We apply these results to graphs converging locally to trees and derive a new formula for the Stieltjes transform of the spectral measure of such graphs. We illustrate our results on the uniform regular graphs, Erdos-Renyi graphs and graphs with a given degree sequence. We give examples of application for weighted graphs, bipartite graphs and the uniform spanning tree of n vertices. 2010 Wiley Periodicals, Inc. Random Struct. Alg., 37, 332-352, 2010
引用
收藏
页码:332 / 352
页数:21
相关论文
共 50 条
  • [1] Eigenvalue Distribution of Bipartite Large Weighted Random Graphs. Resolvent Approach
    Vengerovsky, V.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2016, 12 (01) : 78 - 93
  • [2] On bilinear forms based on the resolvent of large random matrices
    Hachem, Walid
    Loubaton, Philippe
    Najim, Jamal
    Vallet, Pascal
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (01): : 36 - 63
  • [3] Resolvent Energy of Graphs
    Gutman, Ivan
    Furtula, Boris
    Zogic, Emir
    Glogic, Edin
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 75 (02) : 279 - 290
  • [4] Large deviations of random walks on random graphs
    Coghi, Francesco
    Morand, Jules
    Touchette, Hugo
    [J]. PHYSICAL REVIEW E, 2019, 99 (02)
  • [5] Analytic solution of the resolvent equations for heterogeneous random graphs: spectral and localization properties
    Silva, Jeferson D.
    Metz, Fernando L.
    [J]. JOURNAL OF PHYSICS-COMPLEXITY, 2022, 3 (04):
  • [6] Embedding large graphs into a random graph
    Ferber, Asaf
    Luh, Kyle
    Nguyen, Oanh
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (05) : 784 - 797
  • [7] Large Deviations for Dense Random Graphs
    Chatterjee, Sourav
    [J]. LARGE DEVIATIONS FOR RANDOM GRAPHS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLV - 2015, 2017, 2197 : 53 - 70
  • [8] LARGE HOLES IN SPARSE RANDOM GRAPHS
    FRIEZE, AM
    JACKSON, B
    [J]. COMBINATORICA, 1987, 7 (03) : 265 - 274
  • [9] LARGE INDUCED MATCHINGS IN RANDOM GRAPHS
    Cooley, Oliver
    Draganic, Nemanja
    Kang, Mihyun
    Sudakov, Benny
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (01) : 267 - 280
  • [10] Generating Random Graphs with Large Girth
    Bayati, Mohsen
    Montanari, Andrea
    Saberi, Amin
    [J]. PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 566 - 575