ROBUST LOW-RANK TENSOR MODELLING USING TUCKER AND CP DECOMPOSITION

被引:0
|
作者
Xue, Niannan [1 ]
Papamakarios, George [2 ]
Bahri, Mehdi [1 ]
Panagakis, Yannis [1 ,3 ]
Zafeiriou, Stefanos [1 ]
机构
[1] Imperial Coll London, London, England
[2] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[3] Middlesex Univ, London, England
基金
英国工程与自然科学研究理事会;
关键词
Tensor Decomposition; Robust Principal Component Analysis; Tucker; CANDECOMP/PARAFAC;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A framework for reliable seperation of a low-rank subspace from grossly corrupted multi-dimensional signals is pivotal in modern signal processing applications. Current methods fall short of this separation either due to the radical simplification or the drastic transformation of data. This has motivated us to propose two new robust low-rank tensor models: Tensor Orthonormal Robust PCA (TORCPA) and Tensor Robust CP Decomposition (TRCPD). They seek Tucker and CP decomposition of a tensor respectively with l(p) norm regularisation. We compare our methods with state-of-the-art low-rank models on both synthetic and real-world data. Experimental results indicate that the proposed methods are faster and more accurate than the methods they compared to.
引用
收藏
页码:1185 / 1189
页数:5
相关论文
共 50 条
  • [1] Robust Low-Rank and Sparse Tensor Decomposition for Low-Rank Tensor Completion
    Shi, Yuqing
    Du, Shiqiang
    Wang, Weilan
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 7138 - 7143
  • [2] A low-rank and sparse enhanced Tucker decomposition approach for tensor completion
    Pan, Chenjian
    Ling, Chen
    He, Hongjin
    Qi, Liqun
    Xu, Yanwei
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 465
  • [3] Tensor Regression Using Low-Rank and Sparse Tucker Decompositions
    Ahmed, Talal
    Raja, Haroon
    Bajwa, Waheed U.
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (04): : 944 - 966
  • [4] Low-Rank Tensor Tucker Decomposition for Hyperspectral Images Super-Resolution
    Jia, Huidi
    Guo, Siyu
    Li, Zhenyu
    Chen, Xi'ai
    Han, Zhi
    Tang, Yandong
    [J]. INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT II, 2022, 13456 : 502 - 512
  • [5] Nonnegative Tensor Completion via Low-Rank Tucker Decomposition: Model and Algorithm
    Chen, Bilian
    Sun, Ting
    Zhou, Zhehao
    Zeng, Yifeng
    Cao, Langcai
    [J]. IEEE ACCESS, 2019, 7 : 95903 - 95914
  • [6] Tensor Denoising Using Low-Rank Tensor Train Decomposition
    Gong, Xiao
    Chen, Wei
    Chen, Jie
    Ai, Bo
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1685 - 1689
  • [7] Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch
    Malik, Osman Asif
    Becker, Stephen
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [8] Constructing low-rank Tucker tensor approximations using generalized completion
    Petrov, Sergey
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2024, 39 (02) : 113 - 119
  • [9] Optimality conditions for Tucker low-rank tensor optimization
    Luo, Ziyan
    Qi, Liqun
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (03) : 1275 - 1298
  • [10] Optimality conditions for Tucker low-rank tensor optimization
    Ziyan Luo
    Liqun Qi
    [J]. Computational Optimization and Applications, 2023, 86 : 1275 - 1298