Lunar precursor effects in the solar wind and terrestrial magnetosphere

被引:26
|
作者
Halekas, J. S. [1 ,2 ]
Poppe, A. R. [1 ,2 ]
Farrell, W. M. [2 ,3 ]
Delory, G. T. [1 ,2 ]
Angelopoulos, V. [4 ]
McFadden, J. P. [1 ]
Bonnell, J. W. [1 ]
Glassmeier, K. H. [5 ]
Plaschke, F. [4 ]
Roux, A. [6 ]
Ergun, R. E. [7 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] NASA, Ames Res Ctr, Lunar Sci Inst, Moffett Field, CA 94035 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA
[5] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany
[6] Lab Phys Plasmas, Paris, France
[7] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
关键词
CRUSTAL MAGNETIC-ANOMALIES; ION-CYCLOTRON INSTABILITY; UPSTREAM ULF WAVES; WHISTLER WAVES; GRIGG-SKJELLERUP; PLASMA-WAVES; FREQUENCY; THEMIS; PROSPECTOR; SURFACE;
D O I
10.1029/2011JA017289
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The two ARTEMIS probes observe significant precursor activity upstream from the Moon, when magnetically connected to the dayside lunar surface. The most common signature consists of high levels of whistler wave activity near half of the electron cyclotron frequency. This precursor activity extends to distances of many thousands of km, in both the solar wind and terrestrial magnetosphere. In the magnetosphere, electrons reflect from a combination of magnetic and electrostatic fields above the lunar surface, forming loss cone distributions. In the solar wind they generally form conics, as a result of reflection from an obstacle moving with respect to the plasma frame (just as at a shock). The anisotropy associated with these reflected electrons provides the free energy source for the whistlers, with cyclotron resonance conditions met between the reflected source population and Moonward-propagating waves. These waves can in turn affect incoming plasma, and we observe significant perpendicular electron heating and plasma density depletions in some cases. In the magnetosphere, we also observe broadband electrostatic modes driven by beams of secondary electrons and/or photoelectrons accelerated outward from the surface. We also occasionally see waves near the ion cyclotron frequency in the magnetosphere. These lower frequency waves, which may result from the presence of ions of lunar origin, modulate the whistlers described above, as well as the electrons. Taken together, our observations suggest that the presence of the Moon leads to the formation of an upstream region analogous in many ways to the terrestrial electron foreshock.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Deep Solar Activity Minimum 2007 – 2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere
    C. J. Farrugia
    B. Harris
    M. Leitner
    C. Möstl
    A. B. Galvin
    K. D. C. Simunac
    R. B. Torbert
    M. B. Temmer
    A. M. Veronig
    N. V. Erkaev
    A. Szabo
    K. W. Ogilvie
    J. G. Luhmann
    V. A. Osherovich
    [J]. Solar Physics, 2012, 281 : 461 - 489
  • [2] REGRESSION MODELLING OF THE INTERACTION BETWEEN THE SOLAR WIND AND THE TERRESTRIAL MAGNETOSPHERE
    Parnowski, A. S.
    Polonska, A. Yu.
    [J]. JOURNAL OF PHYSICAL STUDIES, 2012, 16 (1-2):
  • [3] TRANSMISSION OF SOLAR-WIND HYDROMAGNETIC ENERGY INTO THE TERRESTRIAL MAGNETOSPHERE
    SLAWINSKI, R
    VENKATESAN, D
    WOLFE, A
    LANZEROTTI, LJ
    MACLENNAN, CG
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1988, 15 (11) : 1275 - 1278
  • [4] Coupling of earth's magnetosphere, solar wind and lunar plasma environment
    Sadovski, A.
    Skalsky, A.
    [J]. ADVANCES IN SPACE RESEARCH, 2014, 54 (10) : 2017 - 2020
  • [5] Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere
    Farrugia, C. J.
    Harris, B.
    Leitner, M.
    Moestl, C.
    Galvin, A. B.
    Simunac, K. D. C.
    Torbert, R. B.
    Temmer, M. B.
    Veronig, A. M.
    Erkaev, N. V.
    Szabo, A.
    Ogilvie, K. W.
    Luhmann, J. G.
    Osherovich, V. A.
    [J]. SOLAR PHYSICS, 2012, 281 (01) : 461 - 489
  • [6] LUNAR LIMB EFFECTS IN SOLAR WIND
    COLEMAN, PJ
    SHARP, LR
    RUSSELL, CT
    SCHUBERT, G
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1971, 52 (11): : 855 - &
  • [7] Wind/WAVES Observations of Auroral Kilometric Radiation: Automated Burst Detection and Terrestrial Solar Wind - Magnetosphere Coupling Effects
    Fogg, A. R.
    Jackman, C. M.
    Waters, J. E.
    Bonnin, X.
    Lamy, L.
    Cecconi, B.
    Issautier, K.
    Louis, C. K.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (05)
  • [8] Quantifying the global solar wind-magnetosphere interaction with the Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM) mission concept
    Sibeck, David G. G.
    Murphy, Kyle R. R.
    Porter, F. Scott
    Connor, Hyunju K. K.
    Walsh, Brian M. M.
    Kuntz, Kip D. D.
    Zesta, Eftyhia
    Valek, Phil
    Baker, Charles L. L.
    Goldstein, Jerry
    Frey, Harald
    Hsieh, Syau-Yun
    Brandt, Pontus C. C.
    Gomez, Roman
    DiBraccio, Gina A. A.
    Kameda, Shingo
    Dwivedi, Vivek
    Purucker, Michael E. E.
    Shoemaker, Michael
    Petrinec, Steven M. M.
    Aryan, Homayon
    Desai, Ravindra T. T.
    Henderson, Michael G. G.
    Cucho-Padin, Gonzalo
    Cramer, W. Douglas
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 10
  • [9] Effects of the solar wind magnetosphere coupling in March 1989
    Silbergleit, V
    deArtigas, MMZ
    [J]. SOLAR WIND EIGHT - PROCEEDINGS OF THE EIGHTH INTERNATIONAL SOLAR WIND CONFERENCE, 1996, (382): : 571 - 574
  • [10] Magnetohydrodynamic simulations of the effects of the solar wind on the Jovian magnetosphere
    Walker, RJ
    Ogino, T
    Kivelson, MG
    [J]. PLANETARY AND SPACE SCIENCE, 2001, 49 (3-4) : 237 - 245